
Swift and Trustworthy Large-Scale GPU Simulation
with Fine-Grained Error Modeling and Sampling

Abstract—Kernel-level sampling is one of the most effective
techniques to run large-scale machine learning GPU workloads
on cycle-level simulators by reducing the workload size. Prior
works typically use k-means or rule-based clustering to sample
kernels, assuming all kernels within a cluster behave similarly.
However, we observe that ignoring the heterogeneous runtime
characteristics within clusters can lead to significant sampling
errors. To address this issue, we introduce STEM, a statistical
error modeling approach for fine-grained kernel-level sampling.
We first design an error model to determine the optimal sample
sizes for each of the kernel clusters. Based on this model, we
propose a novel hierarchical clustering methodology, ROOT,
using mathematical optimizations to ensure that each kernel
cluster exhibits homogeneous runtime behavior. To the best
of our knowledge, STEM is the first work to analyze and
provide tight bounds on sampling errors in GPU kernel sampling.
When evaluated on the latest GPU benchmark suites, STEM
demonstrates a sampling error of 0.36%, which is 81.9× and
67.4× smaller than PKA and Sieve, respectively.

I. INTRODUCTION

Cycle-level simulations play a crucial role in computer
architecture research, serving as a means to evaluate the
performance impact of microarchitectural changes, conduct
design space exploration, estimate power and energy con-
sumption, and more. These simulations are extensively used
in GPU research, with popular tools such as MacSim [16],
AccelSim [15], and mGPUSim [29] widely adopted. Due
to the intricate microarchitectural design of GPUs, which
includes high degrees of thread-level parallelism (TLP) and a
stratified cache and memory hierarchy, cycle-level simulations
are particularly beneficial for understanding the performance
behaviors of diverse GPU workloads.

GPUs have become one of the most important accelerators
for machine learning (ML) workloads [6]. However, due to the
large memory footprint and significant computational overhead
associated with the latest ML models [22], it is nearly impos-
sible to run GPU simulations with workloads that utilize these
models. Without effective optimization techniques, the gap
between workloads used on real GPUs and those employed
in cycle-level simulations may significantly widen.

Workload sampling is the most popular way to accelerate
cycle-level simulations by reducing the workload size while
maintaining the unique behaviors of the workloads. Works
like SimPoint [10], SMARTS [35], and LoopPoint [26] have
been proposed and widely adapted in various cycle-level CPU
simulators like Gem5 [20]. The basic idea behind these works
is to first divide the workload into multiple intervals and
extract signature information from each interval that captures
its architectural runtime aspects. Based on these signatures,

they then sample a subset of intervals to run simulations using
only the selected intervals.

Due to the heterogeneous and parallel nature of GPUs,
slightly different approaches have been taken in the GPU
domain. Works such as TBPoint [13], PKA [1], and Sieve [21]
propose kernel-level workload sampling. By simulating only
the sampled kernels that represent the overall behavior of the
entire workload, prior works have notably reduced simulation
time. Some of these methods incorporate skipping or early
termination within kernels to achieve additional speedup.
Photon [19] takes a different approach; it performs online
analysis during the simulation runtime and skips to the next
phase when highly repetitive software behavior is identified.

However, previous works face several limitations. Firstly,
prior approaches have a big discrepancy between the sampled
simulation and the full simulation. We evaluated current kernel
sampling solutions on the CASIO DL Application Suite [5],
obtaining average sampling errors of 29.26% for PKA and
24.08% for Sieve. This level of error is critical, rendering
kernel-level sampling techniques in cycle-level simulation
impractical. Since the error magnitude is comparable to perfor-
mance gains typically seen in architectural studies, it becomes
impossible to determine whether the simulation results are
influenced by sampling errors or actual microarchitectural
changes.

We identify that the huge errors in prior works are due to
their sampling methods that ignore whether they are sampling
kernels that are representative of the whole workload. Our
observations show that most kernels in GPU workloads exhibit
heterogeneous execution time distributions, so different that
even the same kernels sometimes have drastically different
runtime durations. Prior works overlook this heterogeneity in
kernels, treating each kernel’s distribution as a black box and
sampling too few kernels (often just one), leading to large
errors. To challenge the diversity in kernel runtime behaviors, a
fine-grained approach is needed that can adapt to each kernel’s
distribution to sample a representative number of kernels and
extrapolate the whole simulation from just the sampled ones.

Secondly, previous works do not quantitatively address how
the sampling error impacts the simulation results and overall
errors. Prior works like TBPoint, PKA, and Sieve mainly focus
on clustering methods to achieve efficient kernel sampling.
However, they overlook accuracy during the sampling phase
and fail to provide error bounds that quantify the error intro-
duced in performance estimation. Without these error bounds,
the sampling error becomes unpredictable, compromising the
reliability and integrity of the sampled simulation results.

To overcome these limitations, we first introduce STEM,
a statistical error model for GPU kernel sampling that de-
termines optimal sample sizes using the heterogeneous run-
time behavior of kernel data as input. We then use this
model to propose a novel hierarchical clustering and sampling
methodology, ROOT. By performing fine-grained hierarchical
clustering on kernel calls, ROOT significantly reduces the
number of kernel samples required for simulation, ensuring
that the error remains within a specified bound. As a result,
STEM and ROOT provides strict and reliable error bound on
the discrepancy between the sampled simulation and the full
simulation. This error bound works along with a confidence
level that ensures that the sampled simulation will give an ac-
curate approximation to the full simulation. Evaluation results
on CASIO DL Application Suite demonstrate a significant
reduction in error on both ML and non-ML GPU workloads
compared to prior methods, while maintaining comparable
degree of speedups.

We summarize the contributions of this paper as follows:
• STEM is our statistical error model on GPU workload

sampling that leverages the high number of kernel calls in
modern GPU workloads. STEM intelligently determines
the optimal sample sizes for arbitrary set of kernels.

• ROOT is a novel hierarchical clustering methodology for
GPU kernel sampling. ROOT leverages STEM to perform
accurate clustering and sampling on kernels that have
heterogeneous nature of kernel execution statistics. To
our best knowledge, STEM and ROOT is the first work
in GPU simulation domain to provide a tight theoretical
error bound on the difference between full simulation and
sampled simulation.

• STEM and ROOT achieves significantly smaller error
compared to prior works, while maintaining comparable
speedup on most GPU benckmark suites. STEM and
ROOT achieves an error of 0.36% on the latest GPU
benchmark suites, which is 81.9× and 67.4× smaller than
PKA and Sieve, respectively.

• STEM and ROOT’s lightweight profiling overhead en-
ables our method to achieve kernel sampling on large
ML workloads, such as the Bloom and GPT-2 models,
which prior works cannot handle due to their significant
hardware profiling overhead.

II. BACKGROUND

A. Kernel sampling in GPU workloads

Kernel-level workload sampling is one of the most popular
approach for reducing simulation time in the GPU domain [1],
[13], [21]. It is a form of representative workload sampling [8],
based on the assumption that the set of sampled kernels can
fully represent the runtime behavior of the entire workload.
Another key assumption underlying this method is that GPUs
exhibit a linear sequence of kernel calls. This enables estimat-
ing runtime simulation statistics, such as the total number of
simulation cycles, for the full workload by simulating only a
subset of kernels.

Full GPU Workload
Time t=0

Sampled Workload
Speedup

Kernel Clustering Execution Time

Sampling

Simuation

C1 C2 C3

C1

t1 t2 t3

C2 C3

Fig. 1. Kernel-level sampling methodology in GPU simulations. Kernels
with similar runtime characteristics are grouped into clusters, and a few
number of kernels are sampled from each cluster. The sampled simulation
achieves speedup by only running the sampled kernels. The goal of kernel-
level sampling is to reduce the sample set size while keeping the sampling
error small.

Although prior works perform sampling differently, their
general approach is similar, as depicted in Figure 1. First, the
kernel calls of the GPU workload are partitioned into several
clusters using various clustering methods, ensuring that kernels
within each cluster exhibit similar runtime behaviors. Sam-
pling is then performed on each cluster, with the assumption
that sampled kernels will represent the other kernels in the
same cluster. Since only the sampled kernels are simulated,
this method significantly reduces simulation time. Given that
most GPU programs consist of multiple kernel calls, kernel-
level workload sampling has proven effective for the majority
of GPU workloads in prior studies.

With kernel sampling, the total execution time can be
estimated by using a weighted sum. Let Ci denote i-th kernel
cluster obtained after the clustering, shown as Figure 1. Also,
if we define sample size mi as the number of kernels that
we sample from a cluster, the estimated total execution time
ttotal can be obtained as follows:

ttotal =
∑
i

num of kernels in Ci

sample size for Ci
· ti =

∑
i

|Ci|
mi

· ti, (1)

where ti is the duration sum of kernels that are sampled
from cluster Ci.

Moreover, let t∗ represent the ground-truth total execution
time that we want ttotal to approximate. Since every ti can
be measured during the sampled simulation, we can obtain
ttotal which is a good approximation of t∗ only from the
sampled simulation. We define the sampling error e between
the estimated and true total execution times as follows:

e ≡
∣∣∣∣ t∗ − ttotal

t∗

∣∣∣∣× 100(%). (2)

2

The goal of kernel-level sampling is to reduce the sample
size to reduce the simulation time while keeping the sampling
error small.

B. Prior works on kernel sampling

TBPoint uses architecture-independent metrics obtained
from profiling to apply hierarchical clustering, grouping sim-
ilar kernels together and then sampling the kernel closest to
the center of each group. PKA extends the idea of TBPoint
by performing PCA for dimensionality reduction on feature
vectors from profiled data and then uses k-means clustering,
sweeping through k=1 to 20 to find the optimal k. PKA
then samples the first-chronological kernel from each clusters.
Sieve, on the other hand, only uses the number of instructions
as the feature vector to reduce profiling overhead. It clusters
the kernels into three groups based on the Coefficient of
Variation (CoV) of instruction counts, defined as the standard
deviation divided by the mean. It then samples the first-
chronological kernel with the most dominant CTA size.

The limitation of these works is that both the clustering and
sampling procedures are based on empirical insights, lacking
a solid theoretical foundation. First, there is no analysis of
the relationship between the chosen clustering methodology–
typically using hardware metrics–and the resulting kernel
clusters. Consequently, it is unclear whether the clustering
effectively groups similar kernels into the same clusters and
minimizes sampling error, as there is no formal evaluation of
its impact. Additionally, the sampling procedure itself lacks a
rigorous analysis on the distribution of kernels within clusters.
This turns the sampling process into a “black box,” as it
remains uncertain whether the sampled kernels truly represent
the overall behavior of the kernels within the same cluster.
Additionally, there is no qualitative discussion on sampling
error or corresponding error bounds, which undermines the
trustworthiness of kernel sampling methods.

To address these challenges, our approach leverages kernel
execution time statistics as the core metric for effective cluster-
ing and accurate sampling. By applying statistical techniques,
we optimize both the kernel clustering and sampling process
while explicitly quantifying the sampling error. Our proposed
fine-grained clustering method, integrated with statistical error
modeling, enhances the robustness and theoretical foundation
of the sampling procedure. The importance of statistical error
modeling is discussed in detail in Section III, and the proposed
methods are outlined in Section IV.

C. Other sampling methods in GPU workloads

Other popular GPU workload sampling methods, aside from
kernel sampling, focus on sampling or skipping simulation
within a single kernel. Both TBPoint and PKA incorporate
intra-kernel sampling to achieve additional speedup at the cost
of introducing a small level of error. They monitor whether
the runtime behavior of kernels stabilizes, and if so, they skip
the remaining simulation for that kernel or proceed to the next
one. Photon [19] employs online analysis to dynamically check

18.0 18.5 19.0 19.5 20.0
0

100

200

300

400

Resnet50: max_pool

45 50 55 60 65 70 75 80
0

10

20

30

40

50
GPT2: elementwise_grid_stride

Kernel Execution Time (us)

Ke

rn
el

 C
al

ls

Fig. 2. Kernel execution time histograms of GPU kernels in ResNet50 and
GPT-2 workload. The workload and kernel’s name are shown on the top. The
red dotted lines show the ideal normal distribution. Wide kernel distributions
suggest that an accurate error modeling like STEM is needed on kernel-
level sampling. Moreover, the distributions motivate STEM to apply statistical
methods for error modeling.

during runtime if the basic block (BB), warp, or kernel has
stabilized, then skips the simulation to the next phase.

In this paper, we focus exclusively on kernel-level workload
sampling, as modern workloads exhibit a massive number
of kernel calls, with each kernel being relatively short. This
makes it feasible to simulate a subset of kernels at the cycle-
level within a feasible amount of time. Additionally, since
kernel sampling is orthogonal to methods like warp- or BB-
level sampling proposed in prior work, these techniques can
be combined with other inter-kernel level sampling methods;
which is expected to yield even greater speedup.

D. GPU hardware profilers

GPU vendors provide various hardware profiling tools that
are valuable for architectural research. NVIDIA offers Nsight
Systems (NSYS) [24], a performance analysis tool designed
for scaling optimizations, and Nsight Compute (NCU) [23],
which provides detailed hardware-level runtime metrics such
as the number of instructions, memory accesses, warp occu-
pancy, and more. These insights help CUDA programmers
optimize their code. NVIDIA also provides the NVidia Binary
Instrumentation Tool (NVBit) [33], a library for NVIDIA
GPUs that enables instruction injection into precompiled
CUDA programs, allowing researchers to gather hardware-
level information or modify program behavior by altering
instructions, register values, and other elements. Similarly,
AMD provides the Radeon GPU Profiler (RGP) for its GPUs,
offering functionality comparable to NCU for NVIDIA GPUs.

GPU hardware profilers play a crucial role in analyzing
kernels, and the profiled data can be leveraged for efficient
kernel sampling. STEM utilizes NSYS to capture the execution
time of every kernel call. Other approaches, such as TBPoint,
use GPUOcelot [7], PKA relies on NCU to gather 12 metrics
for kernel clustering, and Sieve employs NVBit to obtain the
number of instructions at runtime.

III. MOTIVATIONS ON DESIGNING STEM

We propose two key points in designing our kernel sampling
methodology that address the limitations of prior works:
determining the optimal sample size to balance the trade-off
between speedup and error, and employing fine-grained kernel
clustering to achieve accurate representative sampling in GPU
workloads.

3

15 20 25 30
0

200

400

600

800

Resnet50: sgemm_128x64_nn

5.0 7.5 10.0 12.5 15.0 17.5
0

1000

2000

3000

Resnet50: bn_fw_inf

1.5 2.0 2.5 3.0 3.5
0

100

200

300
GPT2: unrolled_elementwise

6.0 6.5 7.0 7.5 8.0 8.5
0

2000

4000

6000

8000
BERT: sgemm_64x64_nn

Kernel Execution Time (us)

Ke

rn
el

 C
al

ls

Fig. 3. Kernel execution time histograms illustrating distinct runtime behav-
iors of the same kernels across ResNet50, GPT-2, and BERT workloads. The
multiple peaks in each histogram suggest the need for a more refined clustering
method to accurately capture and sample from these varying behaviors, rather
than treating all kernels in a cluster uniformly.

A. Kernel sampling with statistical error modeling

Figure 2 shows two execution time histograms of two
kernels, the name of each kernel and workload are shown at
the top. The diagram illustrates that even identical kernels can
exhibit varying behaviors at runtime, as indicated by the wide
distributions. This suggests that kernel sampling should wisely
determine the sample size, primarily considering statistical
measures such as the mean and variance of the distribution,
ensuring that the sampled mean can closely approximate
the population mean. Previous methods like PKA and Sieve
often introduce large sampling errors by sampling only one
kernel per cluster, despite the fact that these approaches can
achieve significant speedup. This may harm the accuracy and
reliability of the sampled simulation, rendering the estimation
meaningless. This issue is particularly pronounced in ML
workloads with massive number of kernel calls in clusters.

To mitigate this issue, we employ STEM during the sam-
pling phase. Instead of sampling only the first-chronological
kernel from each cluster, our proposed STEM method deter-
mines an optimal sample size based on the distribution within
the cluster. The details of this approach are discussed in the
next section.

B. Fine-grained kernel clustering

Figure 3 illustrates how the same kernel can exhibit distinct
runtime behaviors, with multiple peaks in execution time dis-
tributions. These peaks should be separated prior to sampling
for accurate analysis. However, not all kernels display clearly
separated peaks; for example, BERT’s sgemm kernel shows
overlapping peaks, making clustering difficult. This highlights
the importance of fine-grained clustering methods that can
effectively separate such execution time peaks.

Figure 4 presents the execution time distributions of kernels
within clusters produced by the PKA and Sieve methods. Sur-
prisingly, each cluster contains highly diverse kernel behaviors,
which suggests the clustering phase in both PKA and Sieve
is ineffective. Since PKA and Sieve only sample a single

2 4 6 8 10 12
0

10

20

30

40
PKA: Cluster0

1 2 3 4 5
0

100

200

300

400

500
PKA: Cluster1

5 6 7 8
0

5

10

15

20

25
Sieve: gemv2T

0.0 2.5 5.0 7.5 10.0 12.5
0

10

20

30
Sieve: CatArrayBatchedCopy

Kernel Execution Time (us)

Ke

rn
el

 C
al

ls

Fig. 4. Execution time distributions of kernel clusters in PKA and Sieve
methods. Each subplot depicts the distribution of a single cluster, where cluster
name and method are shown at the top. Using the DLRM workload, we
observe that even a single cluster in both PKA and Sieve exhibits highly
diverse execution behaviors. Since both PKA and Sieve methods sample only
one kernel per cluster, this can lead to significant sampling error.

TABLE I
TOP 5 TIME-CONSUMING GPU KERNELS IN BERT WORKLOAD. THE

WORKLOAD INVOLVES A LARGE NUMBER OF KERNEL CALLS, SUFFICIENT
ENOUGH TO APPLY STATISTICAL APPROACHES.

Kernel Name # Calls Total Time (ns)
volta sgemm 64x32 sliced1x4 tn 278400 2910365652
volta sgemm 32x32 sliced1x4 tn 69600 1878500991

splitKreduce kernel 348000 803385686
volta sgemm 64x64 tn 69600 715703692

gemmSN TN kernel 41600 482964944

kernel from each cluster, this can lead to significant error in
sampling, particularly when execution times within a cluster
are heterogeneous.

ROOT is our proposed kernel sampling methodology that
performs a fine-grained kernel clustering by leveraging the
STEM. ROOT employs a recursive greedy approach along
with kernel execution data to perform efficient kernel clus-
tering while ensuring that the error of the sampled simulation
remains within a small bound ϵ. We describe ROOT and STEM
in detail in the following section.

C. Applying the Central Limit Theorem

To design an accurate error modeling for kernel clustering
and sampling, we first employ the Central Limit Theorem
(CLT) to build a confidence bound on the performance es-
timate [18]. CLT ensures that the sample mean converges
to a normal distribution if each sample is independent and
identically distributed (i.i.d.). The i.i.d. condition required
by the CLT is easily satisfied when random sampling with
replacement is used. Independence is ensured since each
sample is drawn independently, without influencing the others.
The identically distributed condition is met since every sample
follows the same underlying probability distribution.

Since the standard error of a normal distribution is well-
known, we can leverage the CLT to theoretically model the
sampling errors in GPU kernels. We also leverage the high
number of repetitive kernel calls in modern GPU workloads
in applying CLT, as the sample mean converges to a normal

4

X ~ N(µ, σ²/m)

Sample Size m1, m2, m3
Sample Mean X1, X2, X3

τold = m • X
τnew = m1 • X1 + m2 • X2 + m3 • X3Old Cluster

New Subclusters

...

...

...

...

... ...

Kernel Cluster Infos Optimal Sample Size

Execution Time µ, σ known
confidence interval

minimize m:
error bound ε freq.

exe. time

if τold > τnew: split into subclusters
if τold < τnew: stop splitting

Error modeling of X KKT Solver−

−

−

ROOT
(sec. IV-C)

STEM
(sec. IV-B)

STEM STEM
Sample Size m
Sample Mean X − − −

m1, m2, m3, ...
for each cluster

?

−
−

− −

Fig. 5. Overview of STEM (top) and ROOT (bottom). STEM first takes kernel cluster and execution time of each kernel as input. An error model then
estimates the sampling error of sample mean X̄ . A KKT solver is then used to minimize the sample size for each cluster while ensuring the sampling error is
bounded. ROOT determines whether the original cluster or newly split subclusters provide greater simulation speedup by leveraging STEM. If τold > τnew ,
the new simulation time with subclusters is shorter, ROOT proceeds to split the original cluster. Otherwise, the recursion is halted, preserving the original
cluster.

distribution when the sample size goes to infinity. As shown
in Table I, we observe a massive amount of repeated kernel
calls through most of the GPU workloads.

Consider a case where we sample m kernels from a cluster
C. Our primary goal is to estimate the total execution time of
C by only knowing the execution time of the sampled kernels.
By using CLT, no matter what the distribution of kernels in
C looks like, the sample mean X̄ always follow a normal
distribution if the sample size is bigger than 30 [30]. Therefore,
with 95% confidence, the error bound of the sample mean is
given as

[µ− 1.96
σ√
m
,µ+ 1.96

σ√
m
],

where µ and σ are the mean and standard deviation of every
kernel execution time in C [8]. We can leverage this result to
design a rigorous error model; more details can be found in
the following sections.

IV. STEM AND ROOT METHODOLOGY

STEM is a statistical error model that leverages the CLT
to determine the optimal sample sizes for the given kernel
clusters. The summary of STEM is shown on the upper part
of Figure 5, where we use the CLT and KKT-solver to obtain
the optimal solution on arbitrary set of kernel clusters.

ROOT is our fine-grained hierarchical GPU kernel sam-
pling methodology that leverages STEM in both clustering
and sampling phases. The lower part of Figure 5 visualizes
the branching condition of ROOT, using STEM during the
decision making process. Figure 6 is an example of using
ROOT to perform fine-grained kernel clustering. The following
subsections explain STEM and ROOT in details.

A. STEM: Statistical Error Modeling for GPU simulation

We first consider the case where a single kernel cluster
C is given, and we want to determine the minimum sample
size m to ensure the sampling error of sample mean X̄ falls
inside the given error bound ϵ. We use random sampling with

replacement to ensure that i.i.d. conditions are satisfied. From
the CLT, we obtain a sample mean X̄ with follows a normal
distribution, i.e., X̄ ∼ N (µ, σ2/m) [17] where µ and σ2 is
the mean and variance of kernel execution times in C.

To obtain the sampling error of X̄ , we use (1) to get t∗ =
|C| · µ and ttotal = |C| · X̄ . The sampling error definition (2)
gives the following equation when the given confidence level
is 1− α:

e =

∣∣∣∣ |C|X̄ − |C|µ
|C|µ

∣∣∣∣ =
∣∣∣∣∣µ± z1−α/2σ√

m
− µ

µ

∣∣∣∣∣ = z1−α/2σ

µ
√
m

≤ ϵ.

Therefore, the sample size m ensuring e ≤ ϵ can be obtained
as follows:

m = min

{⌈(
z1−α/2

ϵ

σ

µ

)2
⌉
, 30

}
, (3)

where ceiling function is added to ensure m is an integer,
and the min{·, 30} function ensures the sample size to be
always bigger than 30 to satisfy the CLT condition. We name
this Equation (3) as STEM.

The beauty of STEM is that it can be used on any clusters
with arbitrary kernel distributions. However, if we assume
kernels in C follows normal distribution as kernel histograms
show in Figure 2, STEM can ignore the min{·, 30} term.
We call this the Gaussian assumption, and we can use
this assumption on cases where we need bigger degree of
speedup. We will talk about the effect of this assumption in
the Evaluation section by analyzing the impact on error when
the min{·, 30} term is omitted.

B. STEM for multiple kernel clusters

We next consider the case where a set of clusters is given
and we want to determine the optimal number of samples for
each cluster that ensure the error bound e ≤ ϵ.

Let a set of kernel clusters as {C0, C1, ..., Ck−1} and
denote Ni = |Ci| for convenience. Assume we sample

5

m0,m1, ...,mk−1 number of kernels from each of the cluster
respectively. Then, for any i in the range, Ci’s estimated
execution time, ti, can be obtained as ti = NiX̄i where
X̄i ∼ N (µi, σ

2
i /mi). Using the linear combination rule of

normal random variables [28], the estimated execution time
of every sub-cluster t is given as

t =

k−1∑
i=0

ti =
∑
i

NiX̄i

∼ N (
∑
i

Niµi,
∑
i

N2
i

σ2
i

mi
) = N (µ̃, σ̃2),

where µ̃ and σ̃ are shown for brevity.
This t should also satisfy the error bound under 1 − α

confidence interval, thus the following inequality∣∣∣∣ (µ̃+ z1−α/2σ̃)− µ̃

µ̃

∣∣∣∣ ≤ ϵ,

which becomes∑
i

N2
i

σ2
i

mi
≤

(
ϵ

z1−α/2

∑
i

Niµi

)2

,

should also hold.
The workload size to simulate is proportional to the sum

of sampled kernel’s execution times. Therefore, we define τ
which is the execution time sum of sampled kernels. Since
the goal of STEM is to minimize the sample size to reduce the
simulation time, we find the minimum τ within the error bound
ϵ by solving a non-linear minimization problem as follows.
Problem 1.

minimize
mi

τ =
∑
i

miµi

subject to
∑
i

N2
i

σ2
i

mi
≤

(
ϵ

z1−α/2

∑
i

Niµi

)2

and mi > 0 for ∀i ∈ {0, ..., k − 1}.

Solution. KKT Solver. Let ai ≡ µi, bi ≡ N2
i σ

2
i ,

and c ≡ (ϵ
∑

i Niµi/z1−α/2)
2 for brevity. We apply the

Karush–Kuhn–Tucker (KKT) conditions to obtain the follow-
ing solution:

mi =


√∑

j ajbj

c
·
√

bi
ai

 for ∀i ∈ {0, ..., k − 1},

where the ceiling function ensures integer mi values, with
minor sub-optimality. Details found in Appendix VIII-A. □

Using the KKT Solver, we obtain the optimal sample sizes
when a set of clusters is given. Next step is to design a
hierarchical clustering method with STEM.

C. ROOT: Fine-grained hierarchical GPU kernel clustering

Figure 6 illustrates ROOT’s recursive methodology. First,
kernels are clustered by their names, which can be obtained
through hardware-level profilers like NSYS. However, as
demonstrated in Figures 3 and 4, kernels with the same name

often exhibit distinct execution peaks in their histograms.
Because the number of peaks within each cluster is unknown,
traditional methods like k-means clustering, which require
a fixed number of clusters, are not applicable. Instead, a
fine-grained approach that leverages STEM is necessary to
intelligently divide these execution peaks into subclusters.

ROOT is a hierarchical method designed to tackle this
problem. Its primary goal is to minimize simulation time using
a recursive greedy approach, while ensuring that the error
remains within the specified error bound. ROOT determines
whether to split a cluster into smaller subclusters by comparing
the estimated simulation runtime and error for each potential
split. Assume we have a kernel cluster C, and applying a
clustering method on C produces subclusters {Ci : i =
0, . . . , k−1}. The clustering method can be any approach, in-
cluding k-means. ROOT utilizes STEM to determine whether
the sampled simulation time will be shortened by sampling
from subclusters rather than treating C as a single cluster. By
comparing the simulation time of the original cluster (τold)
with the total simulation time of the subclusters (τnew),
ROOT decides whether to split the cluster or not.

τold = mX̄ = ⌈(z1−α/2σ/µϵ)
2⌉ · X̄

τnew =
∑
i

miX̄i

If τold > τnew, partitioning the kernel cluster C into
multiple subclusters {C0, . . . , Ck−1} will reduce the overall
simulation time. In this paper, we use k = 2, but various
values of k can be swept to find the optimal one–i.e., the k
that minimizes τnew–and then compare it to τold to determine
if splitting is beneficial.

We recursively apply the decision process to achieve fine-
grained kernel clustering with bounded error. We conclude the
section by providing a proof that any union of sampling error-
bounded cluster sets also maintains bounded error, provided
the same sample sizes are used across the clusters. By applying
Theorem 1 to each cluster set, we ensure that the total
sampling error across all clusters remains bounded by ϵ.

Theorem 1. Let S(0) = {C(0)
0 , C

(0)
1 , ...}, S(1) =

{C(1)
1 , C

(1)
1 , ...}, ..., S(N−1) = {C(N−1)

0 , C
(N−1)
1 , ...} be

N sets of kernel clusters where the corresponding sampling
error of each cluster set is bounded by ϵ when sample sizes
{m(j)

i } are used for cluster set S(j). Then, the union of every
cluster set

⋃N−1
j=0 S(j) also gives a bounded sampling error

when the same set of sample sizes
⋃N−1

j=0 {m(j)
i } are used.

Proof. The proof is found in Appendix VIII-B

D. Sampling GPU Kernels from clusters

We initiate kernel sampling when a cluster cannot be further
split to achieve more simulation speedup. Clusters with red
outlines in Figure 6 indicate where recursion has halted due to
the condition τold < τnew. For each cluster, random sampling
with the sample sizes mi from STEM is performed.

6

...

...

...

...

...
...

...
...

...
......

...
...

...

...

...

...

Kernel B

Kernel A

GPU
Workload

Kernel C

Execution Time

...Pro�ler

ROOT
τold > τnew

Move on to
Sampling Phase (IV-D)

:

τold > τnew

τold > τnew

τold > τnew
τold > τnew

τold > τnew

Fig. 6. ROOT’s recursive greedy methodology is depicted. First, the GPU workload is initially split into clusters by kernel name. Next, k-means clustering is
applied to divide these clusters into subclusters. ROOT then evaluates whether to proceed with splitting by comparing the estimated simulation time; splitting
only occurs if it yields a greater speedup. If not (red outlines), the recursion stops and ROOT moves to the sampling phase, where the sample size by STEM
is applied.

V. EVALUATION

A. Experiment Setups

Experiment Environment. We used an NVIDIA RTX 2080
GPU to evaluate our sampling methodology, along with NSYS
[24] as the GPU runtime profiler.

Benchmark Suites. We employed the Rodinia GPU Bench-
mark Suite 3.1 [3] and the CASIO DL Application Suite
[5] for workloads comparing STEM with prior works. While
Rodinia represents traditional GPU workloads, CASIO focuses
on state-of-the-art ML applications. We also added 6 ML
workloads (Bert, Bloom, Deit, Gemma, GPT-2, Resnet50)
from Huggingface [14]; details shown in the Appendix VIII-C.

Baseline Methods. For baseline kernel sampling methods,
we compared PKA and Sieve with the results of our work.
We used the NCU profiler to gather the hardware information
required by these methods. Only the kernel sampling part of
PKA was implemented, as intra-kernel sampling is outside
the scope of this paper. The Hugging Face workloads are too
large to run NCU, which is used in PKA and Sieve, so we
only compare our method with random sampling, where each
kernel is randomly sampled with a probability of 0.1%.

Replication & Hyperparameters. To minimize random-
ness in the clustering methods, we repeated each experiment
10 times and averaged the results. The harmonic mean was
used for speedup [9], while the arithmetic mean was used for
sampling error. We set the error bound ϵ to 0.05 and used
k = 2 for k-means clustering in ROOT.

STEM and ROOT Methodologies. We considered two
methods: one using only STEM (labeled STEM-only in
the figures), and the other using both STEM and ROOT
(labeled STEM+ROOT). The STEM-only method does not
employ ROOT in making decisions about splitting clusters
into subclusters; instead, it splits a cluster if the sample size
m exceeds 50. Since STEM-only applies a single general
criterion for clustering, the combination of STEM and ROOT
produces much finer-grained clustering results. Additionally,
STEM+ROOT leverages the Gaussian assumption (Sec. IV-A),

omitting the min{·, 30} function in Equation (3) to achieve
greater speedup. Our evaluation results indicate that this as-
sumption is valid, as the error difference between STEM and
STEM+ROOT is negligible.

B. Speedup and Error validation

Figure 7 and 8 summarize the evaluations of STEM and
ROOT in comparison to prior kernel sampling methods. The
exact numbers for the average speedup and error are shown
in Table II. We discuss the findings separately for each
benchmark suite.

Rodinia Suite: Since most Rodinia workloads do not
consist of a large number of kernel calls, kernel-level sampling
methods typically show lower speedups. The average speedups
for PKA, Sieve, STEM-only, and STEM+ROOT were 6.20×,
4.77×, 1.16×, and 2.48×, respectively. The speedup numbers
suggest applying kernel sampling alone appears less beneficial
for performance gains. In terms of error, the difference be-
tween prior works and STEM+ROOT is significant, reducing
sampling error from 47.73% and 27.46% to just 6.72%.

It is indeed challenging to achieve significant speedups
with Rodinia due to its relatively small workload footprint,
highlighting that the suite has already been widely employed
in most cycle-level simulators [4], [15]. However, as shown
in Figure 7 and 8 in specific benchmarks like gaussian,
lud_cuda, sc_gpu, and others, STEM+ROOT achieves a
comparable degree of speedup to prior works while maintain-
ing near-zero sampling error. For example, STEM and ROOT
reduced the sampling error by 21.88×, 108.42×, and 18.72×
compared to PKA across the three benchmarks, along with
comparable speedups.

Casio Suite: We proceed to evaluate our method on the
latest ML benchmarks, which involve a high number of kernel
calls, allowing STEM to fully utilize its statistical modeling
capabilities. PKA and Sieve, although capable of achieving
significant speedups by sampling only one kernel per cluster,
suffer from large sampling errors. Initially, using the STEM-
only strategy, we achieved an average speedup of 8.07× with

7

Casio SuiteRodinia Suite

Fig. 7. Speedup comparison of four kernel sampling methods on the Rodinia and Casio GPU benchmark suites. The speedup is presented in log-scale, with
each bar representing the speedup of a specific sampling method and the average speedup across all benchmarks shown on the far right.

7.10x, 4.09x 81.9x, 67.4x

Casio SuiteRodinia Suite

Fig. 8. Sampling error comparison of four sampling methods on Rodinia and Casio suites. Since STEM is based on rigorous error modeling, it achieves
near-zero error but has a smaller speedup than prior works. After the ROOT is added to STEM, it achieves comparable speedup to prior works while reducing
the sampling error to near-zero.

a sampling error of 0.37%. Although the error is small enough
to make the sampled simulation trustworthy, the speedup was
insufficient compared to previous works. Since STEM-only
always samples more than 30 kernels per cluster to ensure the
Gaussian sample mean, additional overhead is added compared
to prior works.

By applying the STEM+ROOT method, we achieved a
109.60× speedup with an even smaller error of 0.36%. No-
tably, the fine-grained approach reduced the error further than
STEM-only, despite accepting the Gaussian assumption in
Equation (3). Additionally, STEM+ROOT achieved compara-
ble speedup while reducing the error by 81.89× and 67.40×
compared to PKA and Sieve, respectively. STEM and ROOT
greatly improve the reliability of efficiency kernel sampling in
cycle-level GPU simulations.

VI. DISCUSSION

A. Tradeoff between Speedup and Error

Speedup and error are always in a tradeoff relationship in
kernel sampling; as more kernels are sampled, the speedup
decreases but the sampling error becomes smaller. The chal-
lenge lies in sampling as few kernels as possible while keeping
the error small enough to ensure the reliability of the sampled
simulation. Prior works, like PKA and Sieve, fail in this regard
because their sampling errors are too large to trust their results.
In many cases, these methods result in errors greater than 10%,
which is too significant, rendering kernel sampling for cycle-
level simulations practically meaningless.

Our method, on the other hand, excels by only slightly
increasing the sample size while achieving near-zero sampling
error, significantly outperforming prior works. Figure 9 shows

the scatter plot where the x-axis represents the speedup in log
scale and the y-axis indicates the sampling error in percentage.
The mean values for each sampling method are marked with
black ×’s. The plot demonstrates that by using STEM, we are
able to achieve near-zero sampling error owing to its rigorous
error modeling. However, STEM on its own involves larger
sample sizes, resulting in lower speedups. To overcome this
limitation, the fine-grained clustering from ROOT significantly
reduces the sample size, achieving a speedup comparable to
prior works while keeping the sampling error low.

Figure 10 also evaluates our method on larger ML work-
loads, which are so extensive that hardware-level profilers like
NCU would take months to complete. This makes approaches
such as PKA and Sieve impractical, so we compared our
method only with random sampling, where each kernel is
sampled with a 0.1% chance. The results show that STEM
alone achieves a similar degree of speedup as random sampling
but with much smaller error. When ROOT is combined with
STEM, despite a slight sacrifice of 0.35% in error, we achieve
a significant 22.84× speedup. This demonstrates that our
method, STEM with ROOT, performs exceptionally well in
these larger workloads.

B. Using kernel execution time as a metric

Using microarchitecture-dependent metrics for workload
sampling is not an ideal in workload sampling, as samples may
not accurately represent the entire workload when microar-
chitecture changes. However, if state-of-the-art methods em-
ploying architecture-independent metrics already exhibit sub-
stantial errors across many workloads, this concern becomes
less significant. While numerous prior sampling techniques for

8

TABLE II
AVERAGE SPEEDUP AND ERROR OF FOUR KERNEL SAMPLING METHODS ON THREE GPU BENCHMARK SUITES.

THE HUGGINGFACE SUITE WAS NOT TESTED WITH BASELINE METHODS DUE TO EXCESSIVE PROFILING OVERHEAD.

Benchmark
Suites

Rodinia Casio Huggingface
Speedup (×) Error (%) Speedup (×) Error (%) Speedup (×) Error (%)

PKA (baseline) 6.195 47.732 1425.006 29.260 – –
Sieve (baseline) 4.77 27.46 296.823 24.085 – –

STEM-only 1.157 0.085 8.071 0.370 1388.638 0.213
STEM+ROOT 2.481 6.720 109.595 0.357 31719.057 0.565

10 100 1000 10000
Speedup (log scale)

0

20

40

60

80

Er
ro

r (
%

)

PKA mean

STEM+ROOT mean

Sieve mean

STEM-only mean

Casio Suite
PKA
Sieve
STEM-only
STEM+ROOT

Fig. 9. Scatter plot showing the speedup (log scale) and error (%) of four
kernel sampling methods using the Casio benchmark suite. The black X’s
indicate the mean performance of each method.

both CPU and GPU rely on architecture-independent metrics,
we argue that these metrics alone cannot lead to accurate
methodologies due to the heterogeneous runtime behavior of
GPU workloads. For instance, Figure 4 shows that a single
cluster in Sieve contains kernels with the same name and a low
coefficient of variation (CoV) in runtime instruction counts,
yet their execution distributions are highly diverse.

In response, STEM utilizes kernel execution time as the
metric for both kernel clustering and sampling. We showed
that this approach significantly reduces sampling error, as
demonstrated in Figure 8. By designing a rigorous models
based on execution time, we developed STEM and ROOT to
establish a robust kernel sampling methodology. Additionally,
using kernel execution time offers other advantages, such
as reducing the profiling overhead. We successfully applied
this approach to the Huggingface suite, which was previously
unmanageable with prior works due to its large workload size.

C. Assuming Gaussian kernel distributions

The reason STEM+ROOT exceeds the 5% error bound in
some Rodinia benchmarks is as it ignores the min{·, 30}
term by assuming the sample mean will follow a Gaussian
distribution. Evidence for this can be seen in the STEM-only
results, since the error remained within the bound due to the
min{·, 30} term. However, in most cases, the error difference
between STEM-only and STEM+ROOT was negligible: in
fact, the mean error for STEM+ROOT in the CASIO suite
was smaller. These evaluation results suggest that our Gaussian
assumption holds in most cases, allowing us to achieve greater
speedup with no significant sacrifice in sampling error.

1000 10000 100000
Speedup (log scale)

0

1

2

3

Er
ro

r (
%

)

STEM-only mean

STEM+ROOT mean

Random mean

Huggingface Suite
STEM-only
STEM+ROOT
Random

Fig. 10. Scatter plot of four kernel sampling methods using the HuggingFace
benchmark suite. Due to the high hardware profiling overhead of PKA and
Sieve, we compared STEM only with random sampling.

D. Limitations and Future works

STEM and ROOT’s kernel sampling methods, as well as
other prior kernel sampling approaches, rely on the assumption
that the GPU workload operates using a single stream of
kernels. Under this assumption, simulating a subset of kernels
provides accurate estimations. However, if the workloads
utilize multiple streams with asynchronous kernel calls or
employ techniques like CUDA Graphs–which launch multiple
kernels while managing dependencies–the performance esti-
mation in Equation (1) and the sampling error calculation in
Equation (2) are no longer applicable. Since dependencies and
overlaps between kernels can result in vastly different total
execution times for workloads, a new approach is necessary
for sampling such workloads and accurately estimating their
total execution time. A similar challenge arises in the multi-
GPU domain; when multiple streams or devices are involved,
kernel dependency information, as well as synchronization
and communication overhead, must be factored in to achieve
accurate performance modeling.

Moreover, no kernel-level sampling work, including this
one, has addressed the challenges posed by ML compilers,
architecture-dependent kernels, and hardware-level optimiza-
tions in ML workloads. This presents a particularly difficult
problem as modern ML compilers in Python-based libraries
optimize workloads through a complex stack of intermediate
representations, generating different kernels based on archi-
tecture and workload size. As a result, any kernel sampling
methodology, including ours, must rely on runtime profiling
for each specific GPU architecture to obtain accurate ker-
nel sampling data that reflects the hardware configurations.

9

Fortunately, our work leverages lightweight runtime profilers
like NSYS, minimizing profiling overhead compared to prior
works that utilize more intensive profilers like NCU.

VII. CONCLUSION

This paper presents STEM, a statistical error modeling
technique for accurate kernel sampling in cycle-level GPU
simulations. By rigorously modeling execution time, STEM
significantly reduces sampling error compared to prior meth-
ods. Additionally, we propose ROOT, a novel fine-grained hi-
erarchical kernel clustering methodology that leverages STEM
to achieve accurate sampling while maintaining error bounds.
Our evaluation shows that STEM and ROOT achieve speedups
of 2.48×, 109.60×, and 31719.1× with errors of 6.72%,
0.36%, and 0.57%, respectively across three GPU benchmark
suites. These errors are up to 81.9× smaller than those of
prior works in the CASIO suite, and we successfully applied
our approach to the Huggingface suite, where previous meth-
ods failed due to excessive profiling overhead. Our results
demonstrate that with STEM and ROOT, kernel sampling can
significantly reduce the time required for cycle-level GPU
simulations while maintaining high accuracy.

VIII. APPENDIX

A. Solution for Problem 1.
Let ai ≡ µi, bi ≡ N2

i σ
2
i , and c ≡ (ϵ

∑
i Niµi/z1−α/2)

2 for
simplicity. Then, the Problem 1 becomes as below:

minimize
mi

∑
i

aimi

subject to
∑
i

bi
mi

− c ≤ 0

and mi > 0 for ∀i ∈ {0...k − 1}.

The corresponding Lagrangian function L can be written as
follows:

L(m, λ) =
∑
i

miai + λk · (
∑
i

bi
mi

− c) +
∑
i

λi · (−mi).

The solution m∗ must satisfy the following four
Karush–Kuhn–Tucker (KKT) conditions:

• Stationary Condition: ∇L(m∗;λ) = 0 (a)
• Primal Feasibility:∑

i bi/m
∗
i − c ≤ 0 (b)

and (−m∗
i) ≤ 0 for ∀i ∈ {0...k − 1} (c)

• Dual Feasibility: λi ≥ 0 for ∀i ∈ {0...k} (d)
• Complementary Slackness:

λk · (
∑

i bi/m
∗
i − c) +

∑
i λi · (−m∗

i) = 0 (e)
From (b), (c), and (d), we can see that in each term either

one of λi or the multiplied term should be zero. Since we are
assuming mi > 0, λi = 0 for ∀i ∈ {0...k − 1}.

Also, from (a), ai − λkbi/(m
∗
i)

2 − λim
∗
i = 0.

Since ai ̸= 0, λk ̸= 0 and thus the equality of (b) holds and
thus m∗

i =
√

λkbi/ai for ∀i ∈ {0...k − 1}.
By putting this into (b), we obtain

∑
i

√
aibi/λk = c and

thus λk = (
∑

i

√
aibi/c)

2. Therefore, the solution to the non-
linear optimization problem is:

mi =

√∑
j ajbj

c
·
√

bi
ai

for ∀i ∈ {0...k − 1}.

B. Proof of Theorem 1
Proof. By the definition of sampling errors,∑

i

(N
(j)
i)2

(σ
(j)
i)2

m
(j)
i

≤

(
ϵ

z1−α/2

∑
i

N
(j)
i µ

(j)
i

)2

(4)

satisfies for arbitrary ∀j ∈ {0, ..., N − 1}.
Since ϵ

z1−α/2

∑
i N

(j)
i µ

(j)
i is positive for every j, we can ap-

ply the following inequality when summing up the inequality
(4) for all j’s:∑

j

x2
j ≤

∑
j

xj

2

when xj ≥ 0 for ∀j.

Therefore, summing up (4) by j gives∑
ij

(N
(j)
i)2

(σ
(j)
i)2

m
(j)
i

≤
(

ϵ

z1−α/2

)2∑
j

(∑
i

N
(j)
i µ

(j)
i

)2

≤
(

ϵ

z1−α/2

)2
∑

ij

N
(j)
i µ

(j)
i

2

. (5)

The sum
∑

ij in (5) is the same as summing through every
cluster in the union set

⋃N−1
j=0 {C(j)

ij
}. By substituting

µ̃ =
∑
ij

N
(j)
i µ

(j)
i and σ̃2 =

∑
ij

(N
(j)
i)2

(σ
(j)
i)2

m
(j)
i

,

we can transform (5) into the following inequality∣∣∣∣ (µ̃+ z1−α/2σ̃)− µ̃

µ̃

∣∣∣∣ ≤ ϵ,

which infers that the union of cluster sets also gives bounded
sampling error under 1− α confidence interval.

C. Huggingface workload configurations
Below are the URLs to Huggingface repositories of the

models and datasets that we used for the Huggingface bench-
mark suite.

• Image Dataset [12]: A subset of 10 classes from Imagenet
[6]. Link

• Bert [2]: Pytorch model converted from the official
Google’s implementation to classify 10,000 premise-
hypothesis pairs for sequence classification. Link

• Bloom [27]: Use 8-bit BLOOM model to generate 100
sentences with a max token length of 100. Link

• Deit [32], [34]: Data-efficient Image Transformer for
classifying 3,925 images from imagenette dataset. Link

• Gemma [31]: 2B base version of the Gemma model by
Google, generates 1,000 sentences. Link

• GPT-2 [25]: GPT-2 model by OpenAI, generates 1,000
sentences. Link

• ResNet50 [11]: Classifes 13,400 images from imagenette
dataset. Link

10

https://huggingface.co/datasets/frgfm/imagenette
https://huggingface.co/prajjwal1/bert-medium-mnli
https://huggingface.co/ybelkada/bloom-1b7-8bit
https://huggingface.co/facebook/deit-small-distilled-patch16-224
https://huggingface.co/google/gemma-2b
https://huggingface.co/openai-community/gpt2
https://huggingface.co/microsoft/resnet-50

REFERENCES

[1] C. Avalos Baddouh, M. Khairy, R. N. Green, M. Payer, and T. G.
Rogers, “Principal kernel analysis: A tractable methodology to simulate
scaled gpu workloads,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
724–737. [Online]. Available: https://doi.org/10.1145/3466752.3480100

[2] P. Bhargava, A. Drozd, and A. Rogers, “Generalization in nli: Ways
(not) to go beyond simple heuristics,” 2021.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing.”
Piscataway, NJ, USA: IEEE, 2009, pp. 44–54.

[4] E. Chung, “Macsim user guide and available traces,” https://github.com/
gthparch/MacSim-User-Guide, 2024.

[5] M. Davies, I. McDougall, S. Anandaraj, D. Machchhar, R. Jain,
and K. Sankaralingam, “A journey of a 1,000 kernels begins
with a single step: A retrospective of deep learning on gpus,”
in Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 2, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 20–36. [Online].
Available: https://doi.org/10.1145/3620665.3640367

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[7] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark,
“Ocelot: a dynamic optimization framework for bulk-synchronous
applications in heterogeneous systems,” in Proceedings of the 19th
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 353–364. [Online]. Available:
https://doi.org/10.1145/1854273.1854318

[8] L. Eeckhout, Computer Architecture Performance Evaluation Methods,
1st ed. Springer Cham, 2022.

[9] L. Eeckhout, “Rip geomean speedup use equal-work (or equal-time)
harmonic mean speedup instead,” IEEE Computer Architecture Letters,
2024.

[10] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” J. Instr. Level Parallelism,
vol. 7, 2005. [Online]. Available: https://api.semanticscholar.org/
CorpusID:11937761

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[12] J. Howard, “Imagenette: A smaller subset of 10 easily classified
classes from imagenet,” March 2019. [Online]. Available: https:
//github.com/fastai/imagenette

[13] J.-C. Huang, L. Nai, H. Kim, and H.-H. S. Lee, “Tbpoint: Reducing
simulation time for large-scale gpgpu kernels,” in 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, 2014, pp.
437–446.

[14] Huggingface, “Huggingface,” https://huggingface.co/.
[15] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim:

An extensible simulation framework for validated gpu modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 473–486.

[16] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho,
“Macsim: A cpu-gpu heterogeneous simulation framework user guide.”

[17] D. M. Lane, “Onlinestatbook: Sampling distribution of the mean,” https:
//onlinestatbook.com/2/sampling distributions/samp dist mean.html.

[18] D. J. Lilja, Measuring Computer Performance: A Practitioner’s Guide.
Cambridge University Press, 2000.

[19] C. Liu, Y. Sun, and T. E. Carlson, “Photon: A fine-grained sampled
simulation methodology for gpu workloads,” in Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’23. New York, NY, USA: Association for Computing
Machinery, 2023, p. 1227–1241. [Online]. Available: https://doi.org/10.
1145/3613424.3623773

[20] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharad-
waj et al., “The gem5 simulator: Version 20.0+,” arXiv preprint
arXiv:2007.03152, 2020.

[21] M. Naderan-Tahan, H. SeyyedAghaei, and L. Eeckhout, “Sieve: Strat-
ified gpu-compute workload sampling,” in 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2023, pp. 224–234.

[22] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman,
N. Akhtar, N. Barnes, and A. Mian, “A comprehensive overview of
large language models,” 2024.

[23] NVIDIA, “Nvidia nsight compute,” https://developer.nvidia.com/nsight-
compute.

[24] NVIDIA, “Nvidia nsight systems,” https://developer.nvidia.com/nsight-
systems.

[25] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[26] A. Sabu, H. Patil, W. Heirman, and T. E. Carlson, “Looppoint:
Checkpoint-driven sampled simulation for multi-threaded applications,”
in 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2022, pp. 604–618.

[27] T. L. Scao and A. F. et al., “Bloom: A 176b-parameter open-access
multilingual language model,” 2023.

[28] J. Soch, “The book of statistical proofs,” https://statproofbook.github.io/
P/norm-lincomb.

[29] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K.
Ziabari, Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and
D. Kaeli, “Mgpusim: enabling multi-gpu performance modeling and
optimization,” in Proceedings of the 46th International Symposium
on Computer Architecture, ser. ISCA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 197–209. [Online].
Available: https://doi.org/10.1145/3307650.3322230

[30] E. Tanis and R. V. Hogg, Probability and Statistical Inference, 1977.
[31] G. Team, T. Mesnard, and C. H. et al., “Gemma: Open models based

on gemini research and technology,” 2024.
[32] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and

H. Jégou, “Training data-efficient image transformers and distillation
through attention,” 2021.

[33] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “Nvbit: A
dynamic binary instrumentation framework for nvidia gpus,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 372–383.

[34] B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, M. Tomizuka,
J. Gonzalez, K. Keutzer, and P. Vajda, “Visual transformers: Token-
based image representation and processing for computer vision,” 2020.

[35] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe, “Smarts: acceler-
ating microarchitecture simulation via rigorous statistical sampling,” in
30th Annual International Symposium on Computer Architecture, 2003.
Proceedings., 2003, pp. 84–95.

11

https://doi.org/10.1145/3466752.3480100
https://github.com/gthparch/MacSim-User-Guide
https://github.com/gthparch/MacSim-User-Guide
https://doi.org/10.1145/3620665.3640367
https://doi.org/10.1145/1854273.1854318
https://api.semanticscholar.org/CorpusID:11937761
https://api.semanticscholar.org/CorpusID:11937761
https://github.com/fastai/imagenette
https://github.com/fastai/imagenette
https://huggingface.co/
https://onlinestatbook.com/2/sampling_distributions/samp_dist_mean.html
https://onlinestatbook.com/2/sampling_distributions/samp_dist_mean.html
https://doi.org/10.1145/3613424.3623773
https://doi.org/10.1145/3613424.3623773
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://statproofbook.github.io/P/norm-lincomb
https://statproofbook.github.io/P/norm-lincomb
https://doi.org/10.1145/3307650.3322230

	Introduction
	Background
	Kernel sampling in GPU workloads
	Prior works on kernel sampling
	Other sampling methods in GPU workloads
	GPU hardware profilers

	Motivations on designing STEM
	Kernel sampling with statistical error modeling
	Fine-grained kernel clustering
	Applying the Central Limit Theorem

	 STEM and ROOT Methodology
	STEM: Statistical Error Modeling for GPU simulation
	STEM for multiple kernel clusters
	ROOT: Fine-grained hierarchical GPU kernel clustering
	Sampling GPU Kernels from clusters

	Evaluation
	Experiment Setups
	Speedup and Error validation

	Discussion
	Tradeoff between Speedup and Error
	Using kernel execution time as a metric
	Assuming Gaussian kernel distributions
	Limitations and Future works

	Conclusion
	Appendix
	Solution for Problem 1.
	Proof of Theorem 1
	Huggingface workload configurations

	References

