Euijun Chung

Email: euijun@gatech.edu LinkedIn: euijun-chung Github: github.com/ejchung0406

Introduction

Euijun Chung is a 2nd-year CS PhD student at Georgia Tech, focusing on GPU microarchitecture and simulations for ML workloads. His research interests lie on cycle-level GPU simulation and performance modeling, GPU memory safety, GPU + SSD architecture co-design, and distributed Multi-GPU systems.

EDUCATION

Georgia Institute of Technology

Ph.D. in Computer Science

Advisor: Hyesoon Kim

Korea Advanced Institute of Science and Technology (KAIST)

B.S. Major in Electrical Engineering, Minor in Mathematical Sciences

GPA: 4.05/4.30 (Summa Cum Laude)

Atlanta, GA, USA

Jan. 2024 - Present

Daejeon, Korea

Feb. 2018 – Feb. 2024

Experience

AMD RAD (Research and Advanced Development)

Research Associate at Advanced Memory Team

Santa Clara, CA, USA

May. 2025 – Aug. 2025

Proposed a near-zero-cost algorithmic improvement for future chiplet-based GPU architectures, significantly reducing remote HBM traffic during end-to-end LLM inference and training. Modified PyTorch API, ATen's tensor operators, and memory allocation in the c10 library for implementation and evaluation.

Research Projects

Georgia Tech HPArch Lab

Atlanta, GA, USA

Graduate Research Assistant (Advisor: Hyesoon Kim)

Jan. 2023 - Present

- GPU Simulation & Performance Modeling: Proposed statistical kernel-sampling methodology for accelerating cycle-level GPU simulations on ML/LLM workloads [1], [2], achieving scalable simulations with < 1% sampling error. First-author publication at MICRO 2025.
- GPU Memory Safety: Designed and evaluated LMI [3], a novel fine-grained hardware bounds-checking solution for GPUs with under 1% performance overhead in HPC and ML benchmarks. Second-author publication at HPCA 2025.
- GPU-SSD architecture co-design: Developed a GPU-SSD integrated simulator [link] for evaluating adaptive GPU block scheduling and address mapping policies on co-designed architectures [4].
- Open-source GPU Simulator: Added SASS-level tracer for Macsim to run workloads on latest CUDA versions [link], utilized NVBit and CUDA Runtime APIs.
- Vortex 2.0: Contributed to the cache subsystem of the next-generation open-source RISC-V GPU.

KAIST INALab

Daejeon, Korea

Undergraduate Research Assistant (Advisor: Dongsu Han)

Jul. 2021 – Aug. 2022

• Scene-clustered Superresolution Training: Developed a content-aware video delivery and upscaling methodology using scene-level classification and fine-tuning, achieving + 5.8 dB PSNR improvement over prior methods with the same resource usage, using ONNX and TensorRT.

PUBLICATIONS

- [1] **Euijun Chung**, Seonjin Na, Sung Ha Kang, and Hyesoon Kim, "Swift and trustworthy large-scale GPU simulation with fine-grained error modeling and hierarchical clustering", in 2025 58th IEEE/ACM International Symposium on Microarchitecture (MICRO), IEEE, 2025.
- [2] **Euijun Chung**, Seonjin Na, and Hyesoon Kim, "Allegro: GPU simulation acceleration for machine learning workloads", in *Machine Learning for Computer Architecture and Systems 2024 (MLArchSys, co-located with ISCA)*, 2024.
- [3] Jaewon Lee, **Euijun Chung**, Saurabh Singh, Seonjin Na, Yonghae Kim, Jaekyu Lee, and Hyesoon Kim, "Let-me-in: (still) employing in-pointer bounds metadata for fine-grained GPU memory safety", in 2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA), 2025.
- [4] Xueyang Liu, Seonjin Na, **Euijun Chung**, Jiashen Cao, Jing Yang, and Hyesoon Kim, "Contention-aware GPU thread block scheduler for efficient GPU-SSD", *IEEE Computer Architecture Letters*, 2025.
- [5] Huanzhi Pu, Rishabh Ravi, Shinnung Jeong, Udit Subramanya, **Euijun Chung**, Jisheng Zhao, Chihyo Ahn, and Hyesoon Kim, "Hardware vs. software implementation of warp-level features in vortex RISC-V GPU", in *OSSMPIC Open Source Solutions for Massively Parallel Integrated Circuits* (Co-located with DATE), 2025.
- [6] Myoung Jae Lee and **Euijun Chung**, "Experimental analysis on the 0 dimensional plasma model in an inductively coupled plasma (ICP)", in 2016 New Physics: Sae Mulli, 66:1183–1189.

TEACHING

- Teaching Assistant for CS 8803 - GPU Hardware & Software

Summer 2024, Fall 2025

Developed a light-weight GPU architecture simulator used in two course programming assignments.

• Tutor in Freshman Tutoring Program

Fall 2021, Spring 2022, Fall 2022, Fall 2023

Tutored Calculus II (Vector Calculus) to KAIST freshmen through weekly lectures and office hours.

SKILLS

- **Programming**: C/C++, CUDA, Python, C#
- Machine learning frameworks: cuBLAS, Pytorch (ATen and c10), vLLM
- Tools and simulators: NVBit, Macsim, ASTRA-Sim, gem5, MATLAB, ARM Mbed, Unity, LabWindows/CVI
- Languages: English (Proficient), Korean (Native), Japanese (Proficient)

SCHOLARSHIPS AND HONORS

• Gem5 Bootcamp Attendee with Full Travel Grant at UC Davis.

Jul.-Aug. 2024

• ISCA 2023 uArch Workshop Full Grant Recipient

Jun. 2023

Accepted as a full travel grant recipient for the 5th Undergrad Architecture Mentoring Workshop at ISCA 2023.

• KOSAF (Korea Student Aid Foundation) National Science & Technology Scholarship Awarded scholarship for being an outstanding undergraduate student in engineering.

2022 - 2024

• Dean's List for KAIST EE

Fall 2022

Awarded academic honor to students who have achieved exceptional academic performance (top 3%).

Extracurricular Activities & Experiences

• 2nd place in Susquehanna Brainteaser Battle at Georgia Tech

Fall 2024

• AI Competition for Agricultural Commodity Price Prediction

Fall 2022

Participated in Nongnet AI price prediction competition utilizing a comprehensive 10-year agricultural transaction database. Achieved a top 13% ranking out of 69 participating teams.

• Republic of Korea Air Force (ROKAF)

Aug. 2019 - May 2021