y

Let-Me-In:
(Still) Employing In-pointer
Bounds Metadata for Fine-grained
GPU Memory Safety

Jaewon Leet, Euijun Chung', Saurabh Singht, Seonjin Nat,
Yonghae Kim#*, Jaekyu Lees, and Hyesoon Kimt

0 rm ‘ inte|> @rgglr_lgia

Memory Safety

* Provide a protection against the unauthorized memory
access which leads to system vulnerabillity.

« Ex.1) Buffer overflow.
« e.g. Stack smashing attack

=) Allocate adjacent buffers A and B.
Trigger the buffer overflow on buffer A.

Read on B will obtain the incorrect value.
A B

|
BUFFER OVERFLOW er B
Georgia

2 arm (lntel) Gl" Tech.

- Ex.2) Dangling H# :

Yons P ran w40 3 Drokiern and remd 10 vea, Wa Ty il coecing.
e v o, wrd Ben w') ke Vo you.

Previous
GPU

Passive o Generic
, Limited Usage
Device Data

Research on GPU Memory Safety

IS actively going on!

Active General Private
Device Purpose Data

arm (intel)‘

Georgia
Tech

Now GPUs Need New Memory Safety Solution

» Previous studies focused on per-kernel memory safety
solution.

 Memory safety on buffers allocated by host, accessed by
threads

* Not sufficient for recent attacks
« e.g. Stack-smashing attacks on GPUsl.

* Need a per-thread memory safety solution.

 Protection on memory chunks allocated and used by each
thread at RUNTIME

[1] Guo, Yanan, Zhenkai Zhang, and Jun Yang. "GPU Memory Exploitation for Fun and Profit." In 33rd USENIX Security Symposium_/t'D Georgia
e GI'

. arm (in Tech

Per-kernel Solution: Pointer Tagging Method

Memory
- Bounds Table
5 ’ IR
__host__int main () Base Address Size
{
A = cudaMalloc(256); 1D, 0x8000...0100 256

__device__int kernel(*A) object NN
Alindex]= 0x10; Bounds [
- Table
C1a Bounds

checking!

Buffer ID to identify the memory chunk.

Buffer Base Address to specify the starting address of the buffer.
Buffer Size to store the size to determine the end address.

Utilize unused upper bits in pointer as a tag(= Buffer ID) storage.

ap

Issues In Per-thread Pointer Tagging Method

Memo ry Bounds Table
: Base Address

Thread O

Thread 1

Thread 2

Thread 3

Thread 4
Bounds M ,
Table § =
3. Too many
: IDg 0x8000...0700 256

33332
<[+

bits for ID

Thread 31 ?V\l\ D ID,; 0x8000...2000 256

Georgia

7 arm lnte) Gl" Tech.

(1) Let’s Remove Bounds Table.

* Immune to memory access ISSues.
 Verify the bounds per thread only with its size information instead of ID

Pointer Tagging New solution

Memory
object

Bo Table P o= ===

l
a : I . > Georgi
Address | S'%® | | intel) Gr =

ID Ptri v

There are (Still) Problems

2) How to minimize
the size bits?

Aligned Pointer

1) How can we check
bounds without BASE
address?

Georgia
9 Tech.

(2) Let buffer be aligned to a power-of-two size

* We can remove BASE address.

» Keep base address information in address itself.
* Make the base address part unmodifiable.
e Check if it Is modified or not.

« We can minimize the size bits.

» Store the extent part only.
» 32bit size can be represented within 5 bit.

Georgia

; arm (intel)b Cr 2%

Memory Checking Without Base Address Info.

0x1000

Buffer A

@

)

Ptr A -= ox400 V

Size:

Pt r‘_A = Malloc (@Xl@@@)\/ 0x1000

= 27§
Ptr A += 0x900 -

Excessive bounds checking operation
might lead to performance overhead.

0x3

0x500

11 Sb

Georgia

CI rrm @Lel) Tech.

Feasibility of All-Time Bounds Checking

2) How to minimize
the size bits

> Memory
\Vn object

XQ Memory
object

SIZE| =

3) How can we reduce
the checking overhead?

1) How can we check

bounds without BASE

address?

arm (intela)

Cr

Georgia
Tech.

Not all Arithmetic Operation are Address Operation.

*Requires compiler support for instruction marking

Q)

ADD 11,12, 13 :3 Ilgct)eir?tirr
ADD P1,P1, 0x0 '
ADD P2, P2, -0x100

Non-
Pointer

E Compiler Analysis

Georgia

arm (intelﬁ) Cr R

Low Overhead Overflow Checking Unit (OCU)

« Utilizing marking bits in the instruction set for static-time analysis.
« Hardware checking unit to operate within a single cycle.

Address Register Selection

Var
RAddr RVar |
63 0 M =
| Instruction | Var C
" Control |RSVDAIS| Inst. | ! " X
Control signals ALU
from instruction v :L : Activation ¥ : Unmodifiable
Result : Selection M : Modifiable
I3 : Extent ___: Optional Georgia
14 arm (intel/ Tech’

GPUs: More Room to Maneuver Than CPUs

1. Lower fragmentation overhead from power-of-two alignment.
« Fragmentation is a critical issue in CPU programs.

 Fortunately, the GPU fragmentation is low enough (19.7%)

* This is a key trait of GPU programs, which mostly align data sizes to powers of
two.

s
T B
- O
2 £ 60 -]
2 2 40
= 21|] |
R ROF BT RSN L S .. oS
RO SN S S
§ SSFIe0/€ s 58 50F & SIILNEFS
N FE IS Loy P99 ¢ DoXO @
S < & S
RO INES 9 :
SN S) o Q@ .
S £S el) CrExe

15 P -

GPUs: More Room to Maneuver Than CPUs

1. Lower fragmentation overhead from power-of-two alignment.
« Fragmentation is a critical issue in CPU programs.

 Fortunately, the GPU fragmentation is low enough (19.7%)

* This is a key trait of GPU programs, which mostly align data sizes to powers of
two.

2. Simpler memory operation
1. (Almost) no immediate number assign to pointers
2. (Almost) no pointer load/store

Georgia

16 arm (Intel) Gl" Tech.

More In Our Paper!

« Compiler and Runtime Library Support.

« Hardware Implementation on Vortex Projectll] and
Power/Area Analysis.

* Temporal Safety.

[1] Tine, Blaise, Krishna Praveen Yalamarthy, Fares Elsabbagh, and Kim Hyesoon. "Vortex:
Extending the RISC-V ISA for GPGPU and 3D-graphics." In MICRO-54

arm (intel)“ Cr R

17

LMI Recap

1. Compiler Analysis

2. Runtime library support
3. Hardware Overflow Checking Unit (OCU)

2. Runtime
Library

£, eI 3. Hardware Overflow Checking

Analysis

Georgia
Tech.

18

Evaluation Method

 Simulation Environment.
 Macsim!t! Simulator.
* With trace generated with NVBIt.

* Target Benchmarks
« HPC , ML, LLM, and ADAS applications

[1] Kim, Hyesoon, Jaekyu Lee, Nagesh B. Lakshminarayana, Jaewoong Sim, Jieun Lim, and Tri Pho.
"Macsim: A cpu-gpu heterogeneous simulation framework user guide." Georgia Institute of

- 1. . G 1
Technology (2012): 1-57. arm :I’ntel) Gr ngflgla

19

Lower is better

Evaluation for HW/Compiler solutions

* LMI Shows the better performance with wider security
coverage on various benchmarks.

Fast
Rodina Tango Transformer ADAS
gz.d 2.5 5.1 2.7 2.4 2.7 2.1 112.0 2.1 6.0 22 2.5
£
u1.5l
X 1.0
X1
c 0.5
S0 .
R & 1% . O & ¢ & o XIS O LR S L
\@@ © &\\{L\}&'& X 4’33‘\ C ° cz,"-"’6 Qﬁ R ‘{\"\‘6 c?Q X7 7 e:&. s@& & \5’3ﬂ o ob\Q o c,oé c,ob \\?59 e Q\O’& 0<(° (06%
NS NN o & ’s B 7L g% R s 7 & @é\ 6@9& &
@ {\\ e rd (") Ve \:S,
&€ o8 R
e P

1 Compiler mEmm Previous I

]

- d
solution narcvare arm (intel) Gr &3¢

20 Solution

Conclusion

* Proposes an efficient bounds-checking solution with in-
pointer meta-data for fine-grained GPU memory safety.

* Through employing power-of-two-sized buffer allocation,
* Minimized the metadata so that it can be embedded into pointers

« Extremely low bounds checking overhead

« Enable to implement correct-by-construction concept, so that LMI guarantee
the integrity of pointer from pointer creation to pointer deallocation.

Georgia

21 arm (lntel) Gl" Tech.

THANK YOU!!
Questions?

	Slide 1: Let-Me-In: (Still) Employing In-pointer Bounds Metadata for Fine-grained GPU Memory Safety
	Slide 2: Memory Safety
	Slide 3: Memory Safety
	Slide 4: Arise of The Concern on GPU Security
	Slide 5: Now GPUs Need New Memory Safety Solution
	Slide 6: Per-kernel Solution: Pointer Tagging Method
	Slide 7: Issues in Per-thread Pointer Tagging Method
	Slide 8: (1) Let’s Remove Bounds Table.
	Slide 9: There are (Still) Problems
	Slide 10: (2) Let buffer be aligned to a power-of-two size
	Slide 11: Memory Checking Without Base Address Info.
	Slide 12: Feasibility of All-Time Bounds Checking
	Slide 13: Not all Arithmetic Operation are Address Operation.
	Slide 14: Low Overhead Overflow Checking Unit (OCU)
	Slide 15: GPUs: More Room to Maneuver Than CPUs
	Slide 16: GPUs: More Room to Maneuver Than CPUs
	Slide 17: More In Our Paper!
	Slide 18: LMI Recap
	Slide 19: Evaluation Method
	Slide 20: Evaluation for HW/Compiler solutions
	Slide 21: Conclusion
	Slide 22: THANK YOU!! Questions?

