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Cycle-level simulations enable fast validation of new (micro)architecture designs.

Problem: Cycle-level simulators are too slow!

A 1-second workload on a real GPU can take several days on a simulator.
• For trace-based simulators, trace size grows along with workload size.

GPU microarchitecture simulation
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Architectural 
design changes

IPC
Cache Hit Rate
Num of Instrs
Power usage

…

Cycle-level GPU Simulator



Kernel-level sampling for GPU workloads

• Kernel-level sampling: reducing workload size by sampling important kernels.

• Idea: Instead of running the full workload, skip the repeating kernels.
• Pros: Simulation acceleration, reduced trace size / Cons: Simulation accuracy 
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Tradeoff on speedup and accuracy:
More kernel samples make the sampled simulation longer but accurate.

Total runtime = 498 ms

Sampled runtime = 203 ms



GPU Kernels’ execution time distributions
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Observation: Identical GPU kernels show huge variation across invocations.

Idea: Leverage kernel exe. time distributions as a key signature to sample kernels.
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GPU Kernels’ execution time distributions
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Observation: Identical GPU kernels show huge variation across invocations.

Idea: Leverage kernel exe. time distributions as a key signature to sample kernels.

• Narrow: constant exe. time → less samples

• Wide: variable performance → more samples

• Multiple: kernel in multiple contexts → separate peaks into clusters then sample
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GPU Kernels’ execution time distributions
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Observation: Identical GPU kernels show huge variation across invocations.

Idea: Leverage kernel exe. time distributions as a key signature to sample kernels.

• Narrow: constant exe. time → less samples

• Wide: variable performance → more samples

• Multiple: kernel in multiple contexts → separate peaks into clusters then sample
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Question 1: Based on their distribution, how many kernels to sample?
Question 2: How to maximize the speedup while the error is minimal?



Determining the sample size

Question 1: Based on their distribution, how many kernels to sample?

Solution: Statistical approach based on kernel profiles.

Adaptive sample size → speedup is maximized while sampling error is minimal.
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Applying the Central Limit Theorem (CLT)
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Central Limit Theorem: The mean of samples will always follow a Gaussian distribution 
as the sample size 𝑚 → ∞.

m kernel samples

Average kernel execution time follows a 
Gaussian distribution ഥ𝑿~𝑵(𝝁, 𝝈𝟐/𝒎).



Applying the Central Limit Theorem (CLT)
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Central Limit Theorem: The mean of samples will always follow a Gaussian distribution 
as the sample size 𝑚 → ∞.

We analytically calculate the relationship between the sample size (m) and the error (e).

• The minimum number of samples to ensure the error bound ϵ:

m kernel samples

Average kernel execution time follows a 
Gaussian distribution ഥ𝑿~𝑵(𝝁, 𝝈𝟐/𝒎).

Assuming Gaussian distribution

Error bound (e.g. 5%)



STEM: Statistical Error Model for kernel sampling
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Optimizing for Multiple Kernels: minimize sim. time while the total error is bounded.
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STEM: Statistical Error Model for kernel sampling
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STEM: Statistical Error Model for kernel sampling
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Optimizing for Multiple Kernels: minimize sim. time while the total error is bounded.
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STEM’s output: 
- Kernel A: 10 samples
- Kernel B: 50 samples

Kernel execution time (us)



Problem: Some kernels favor splitting before sampling with STEM.

Goal: Distinguish each peak into separate clusters before sampling.
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Optimizing STEM for runtime-heterogeneous kernels
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Problem: Some kernels favor splitting before sampling with STEM.

Goal: Distinguish each peak into separate clusters before sampling.
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Optimizing STEM for runtime-heterogeneous kernels
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Clustering



Problem: Some kernels favor splitting before sampling with STEM.

Goal: Distinguish each peak into separate clusters before sampling.
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Optimizing STEM for runtime-heterogeneous kernels

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

STEM

Sample 100 kernels

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

STEM STEM STEM

15 kernels 10 kernels 12 kernels
Question 1: The optimal number of subclusters is unknown. 

Question 2: How to optimize clustering for sampling?



ROOT: Fine-grained hierarchical kernel clustering
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Hierarchical clustering of ROOT
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At every step: Check whether the splitting helps reducing sim. time



Hierarchical clustering of ROOT
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Deriving the ROOT
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Compare the simulation time (τ)*:

ROOT leverages STEM to estimate whether splitting will help on kernel sampling. 

→ If 𝜏𝑜ld > 𝜏𝑛ew, 
  we can save simulation time.

* We use kernel latency as a heuristic for estimating the simulation time.



Summary of STEM + ROOT
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Summary of STEM + ROOT
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1. Group kernels by kernel names.



Summary of STEM + ROOT
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2. ROOT additionally separates runtime-
heterogenous kernels into different groups.



Summary of STEM + ROOT
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3. STEM selects the optimal sample size 
of each group for the best speedup and 
accuracy.



Evaluation of STEM+ROOT

Evaluated GPU workloads:
• Rodinia* (GPGPU workloads)

• Casio** (ML workloads)

• Huggingface (Large-scale LLM/ML workloads)

Baseline methods:
• Random sampling

• PKA [MICRO ‘20]

• Sieve [ISPASS ‘23]

• Photon [MICRO ‘23]

25 * S. Che et al., Rodinia: A benchmark suite for heterogeneous computing, 2009
** M. Davies et al., A Journey of a 1,000 Kernels Begins with a Single Step: A Retrospective of Deep Learning on 
GPUs, ASPLOS 2024



Speedup & Error validation on real HWs
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• STEM+ROOT achieves significantly lower sampling error with comparable speedup.
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: Infeasible due to significant profiling or sampling process overhead
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Speedup & Error validation on cycle-level simulators

• Kernel’s exe. time distribution reveals useful information about its characteristics.

• Adaptive sample size stays robust under HW (compute/memory) changes.
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Workloads used:

- Rodinia (13 benchmarks)

- CASIO (11 benchmarks)

- Huggingface (6 benchmarks)
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More details & evaluation results in our paper!

• Mathematical modeling and proofs on statistical sampling

• Sensitivity analysis on changing the error bound

• Evaluating STEM on a GPU with kernel profiles from a different GPU

• Evaluation on microarchitecture metrics (Cache hit rate, # instrs, etc.)

• Workload profiling overhead comparison for sampling

• and more.
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Conclusion

• Problem: Tradeoff between speedup and accuracy in sampling for simulations.

• Idea: Leverage kernels exe. time distribution to select representative kernels.

• STEM: Optimal sample size selection with bounded sampling error.

• ROOT: Hierarchical clustering for distinguishing runtime-heterogeneous kernels.

• Result: Fast, accurate and scalable kernel sampling for large-scale GPU workloads
• Evaluated 30 GPU benchmarks, STEM+ROOT achieves <1% error with high speedup.29



Thank you!

Questions?

- Presenter: Euijun Chung (euijun@gatech.edu)



Backup slides



Kernel-level sampling for GPU workloads

• Speedup over full simulation ≈
498

150
= 3.32

• Sampling error =
|500−498|

498
× 100(%) = 0.4%

A B A B A B AFull workload

A BSampled workload

50 ms 100 ms 48 ms 102 ms 53 ms 94 ms 51 ms

Total runtime = 498 ms

50 ms 100 ms

Total runtime estimation = 50ms * 4 + 100ms * 3 = 500 ms

Sampled 1 out of 4       kernelsA

Sampled 1 out of 3       kernelsB

Sampled runtime = 150 ms
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Can we make the kernel sampling fast and accurate by leveraging 
the characteristics of large-scale GPU workloads?



STEM: Statistical Error Model for kernel sampling
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Question: What if we are sampling kernels from multiple clusters at the same time?

Sample m1, m2, m3 kernels from each cluster

Solution (Using KKT Conditions):Optimization problem:



Deriving the ROOT
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Compare the speedup:



Kernel-level sampling of GPU workloads
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 Speedup = 

 Sampling error is minimal (bounded).



Baseline kernel sampling methods for GPU workloads

Limitations on previous works:

• PKA, Sieve, and Photon all rely on static code-level analysis, which fail to 
capture runtime heterogeneity of GPU kernels

• PKA and Sieve rely on heavy profiling of instr-level metrics

• Photon’s BBV comparions between kernels involve 𝑶 𝑵𝟐𝒅  computations.
• N = Number of kernels, d = BBV dimension



Speedup & Error validation
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Baseline methods: PKA [Micro ‘20], Sieve [ISPASS ‘23], Photon [MICRO ‘23]



Evaluations on Microarchitectural metrics



Profiling overhead

Using execution time as a key parameter gives a huge improvement in scalability
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