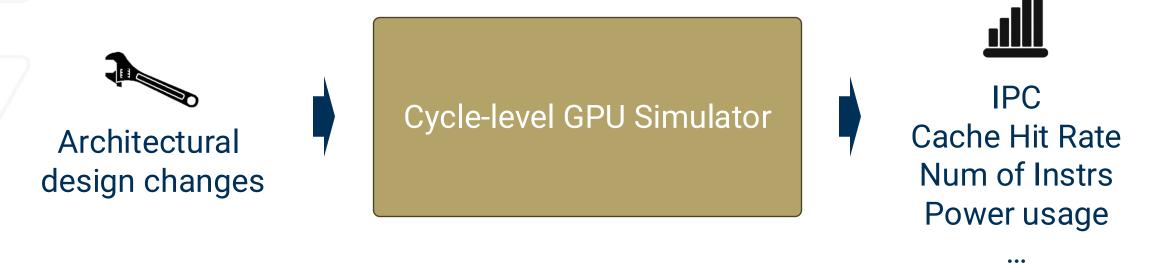
Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering

Euijun Chung, Seonjin Na, Sung Ha Kang, Hyesoon Kim Georgia Institute of Technology 2025 IEEE/ACM International Symposium on Microarchitecture

GPU microarchitecture simulation

Cycle-level simulations enable fast validation of new (micro) architecture designs.

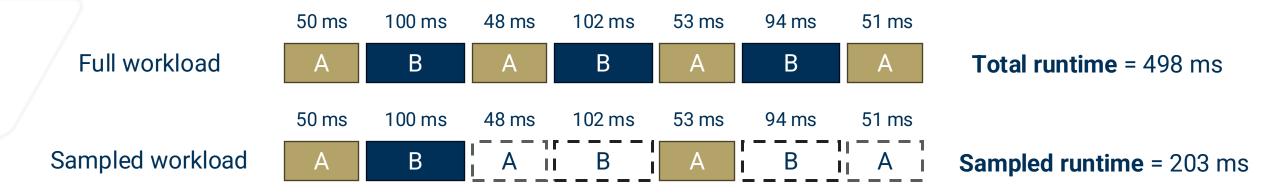


Problem: Cycle-level simulators are too slow!

- ✓ A 1-second workload on a real GPU can take several days on a simulator.
 - For trace-based simulators, trace size grows along with workload size.

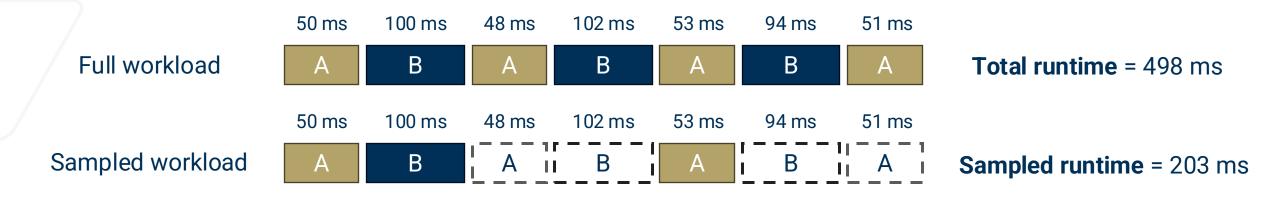
Kernel-level sampling for GPU workloads

- Kernel-level sampling: reducing workload size by sampling important kernels.
- Idea: Instead of running the full workload, skip the repeating kernels.
 - Pros: Simulation acceleration, reduced trace size / Cons: Simulation accuracy



Kernel-level sampling for GPU workloads

- Kernel-level sampling: reducing workload size by sampling important kernels.
- Idea: Instead of running the full workload, skip the repeating kernels.
 - Pros: Simulation acceleration, reduced trace size / Cons: Simulation accuracy



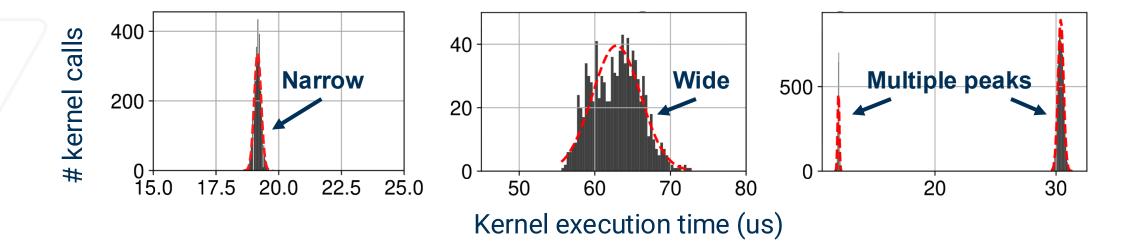
Tradeoff on speedup and accuracy:

More kernel samples make the sampled simulation longer but accurate.

GPU Kernels' execution time distributions

Observation: Identical GPU kernels show huge variation across invocations.

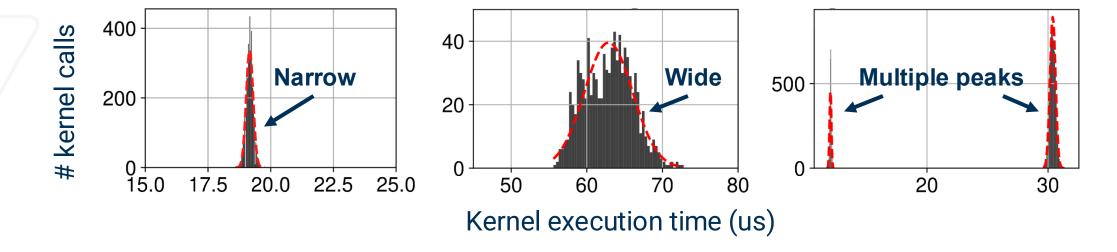
Idea: Leverage kernel exe. time distributions as a key signature to sample kernels.



GPU Kernels' execution time distributions

Observation: Identical GPU kernels show huge variation across invocations.

Idea: Leverage kernel exe. time distributions as a key signature to sample kernels.

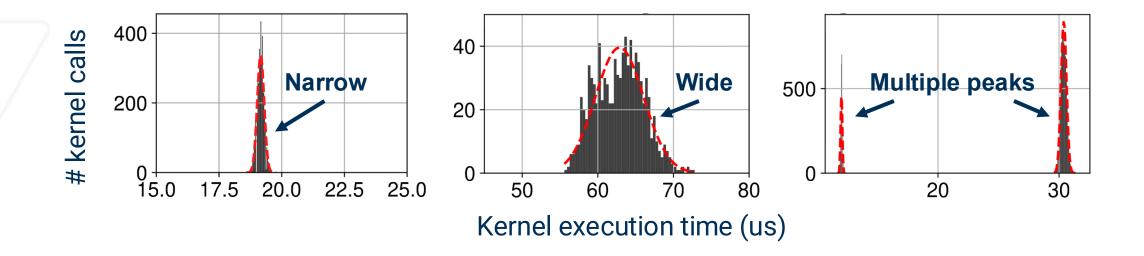


- Narrow: constant exe. time → less samples
- Wide: variable performance → more samples
- Multiple: kernel in multiple contexts -> separate peaks into clusters then sample

GPU Kernels' execution time distributions

Observation: Identical GPU kernels show huge variation across invocations.

Idea: Leverage kernel exe. time distributions as a key signature to sample kernels.

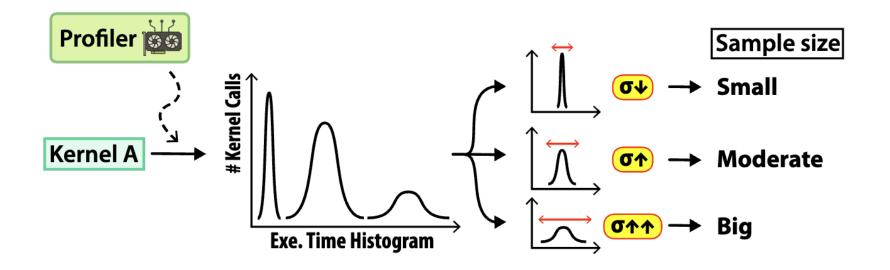


Question 1: Based on their distribution, how many kernels to sample? **Question 2:** How to maximize the speedup while the error is minimal?

Determining the sample size

Question 1: Based on their distribution, how many kernels to sample?

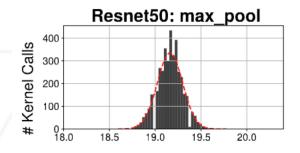
Solution: Statistical approach based on kernel profiles.

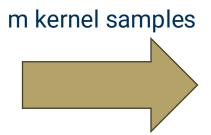


Adaptive sample size -> speedup is maximized while sampling error is minimal.

Applying the Central Limit Theorem (CLT)

Central Limit Theorem: The mean of samples will always follow a Gaussian distribution as the sample size $m \to \infty$.

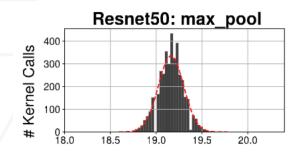


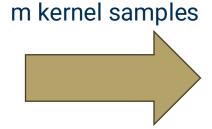


Average kernel execution time follows a Gaussian distribution $\overline{X} \sim N(\mu, \sigma^2/m)$.

Applying the Central Limit Theorem (CLT)

Central Limit Theorem: The mean of samples will always follow a Gaussian distribution as the sample size $m \to \infty$.





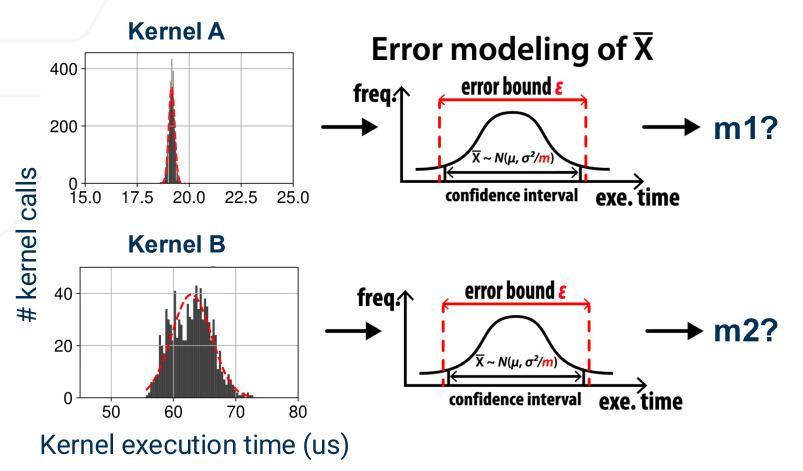
Average kernel execution time follows a Gaussian distribution $\overline{X} \sim N(\mu, \sigma^2/m)$.

We analytically calculate the relationship between the sample size (m) and the error (e).

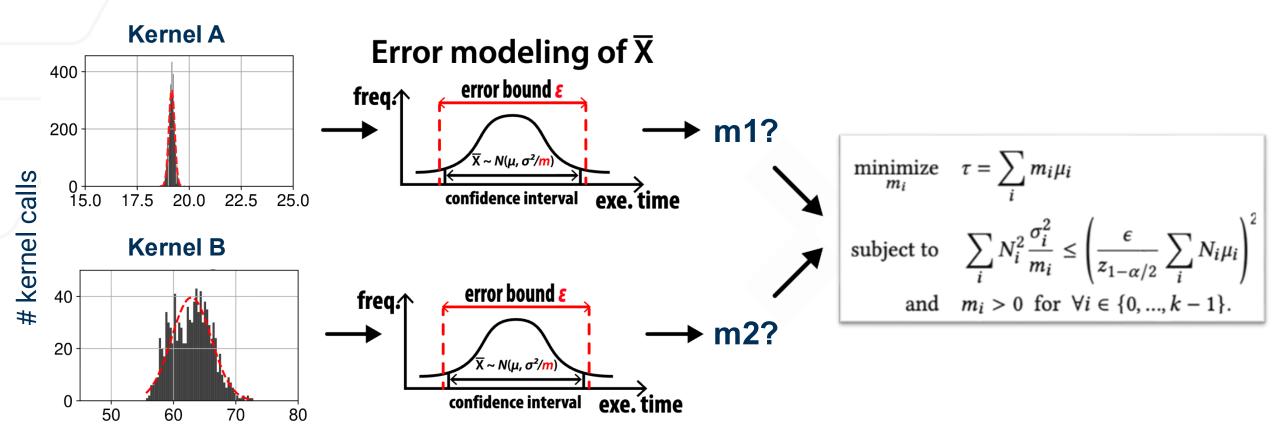
• The **minimum number of samples** to ensure the error bound ϵ :

$$e = \left| \frac{|C|\bar{X} - |C|\mu}{|C|\mu} \right| = \left| \frac{\mu \pm \frac{z_{1-\alpha/2}\sigma}{\sqrt{m}} - \mu}{\mu} \right| = \frac{z_{1-\alpha/2}\sigma}{\mu\sqrt{m}} \le \epsilon$$
 Error bound (e.g. 5%)

Optimizing for Multiple Kernels: minimize sim. time while the total error is bounded.

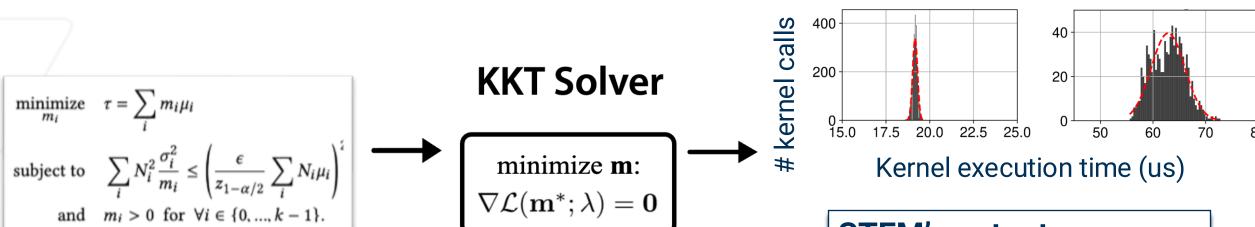


Optimizing for Multiple Kernels: minimize sim. time while the total error is bounded.



Kernel execution time (us)

Optimizing for Multiple Kernels: minimize sim. time while the total error is bounded.



Kernel A

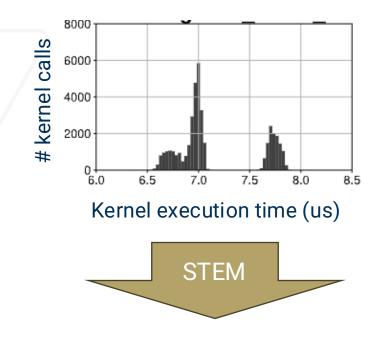
- **Kernel A:** 10 samples
- Kernel B: 50 samples

Kernel B

Optimizing STEM for runtime-heterogeneous kernels

Problem: Some kernels favor splitting before sampling with STEM.

Goal: Distinguish each peak into separate clusters before sampling.

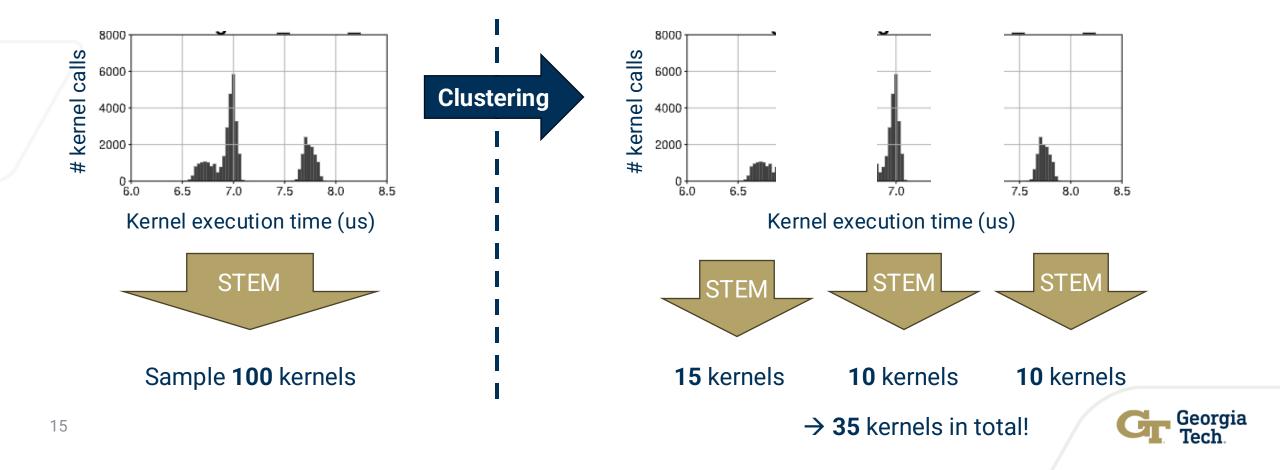


Sample 100 kernels

Optimizing STEM for runtime-heterogeneous kernels

Problem: Some kernels favor splitting before sampling with STEM.

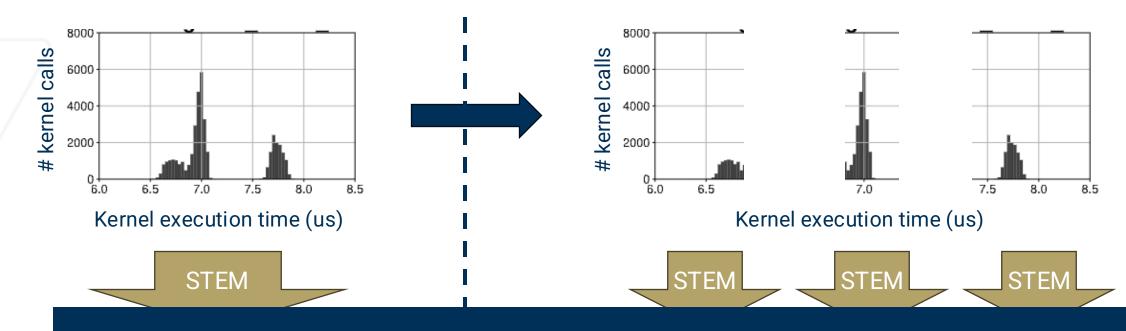
Goal: Distinguish each peak into separate clusters before sampling.



Optimizing STEM for runtime-heterogeneous kernels

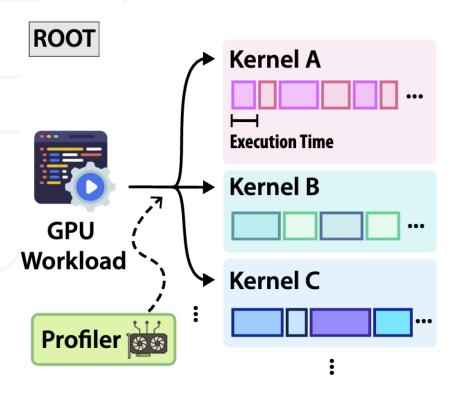
Problem: Some kernels favor splitting before sampling with STEM.

Goal: Distinguish each peak into separate clusters before sampling.

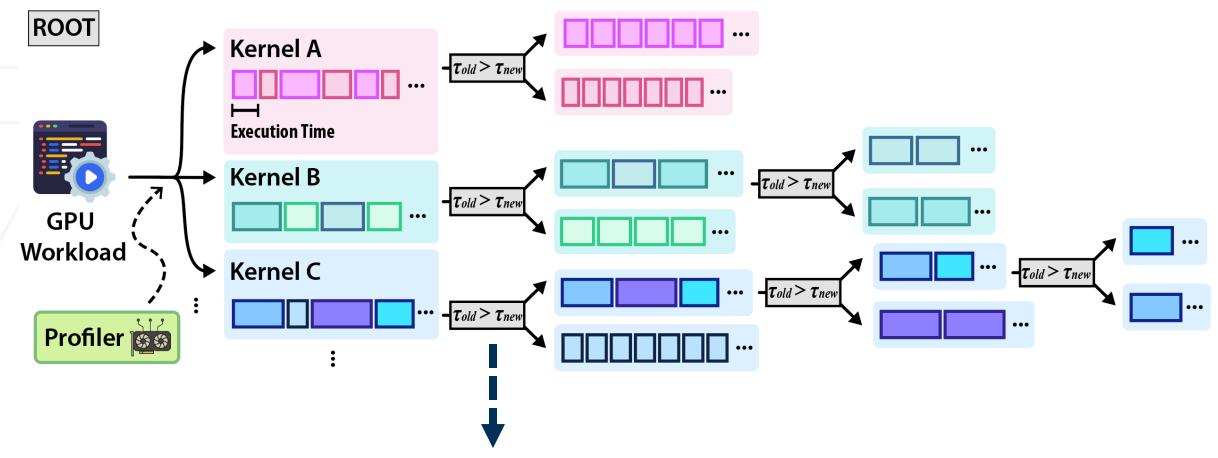


Question 1: The optimal number of subclusters is unknown. **Question 2:** How to **optimize** clustering for sampling?

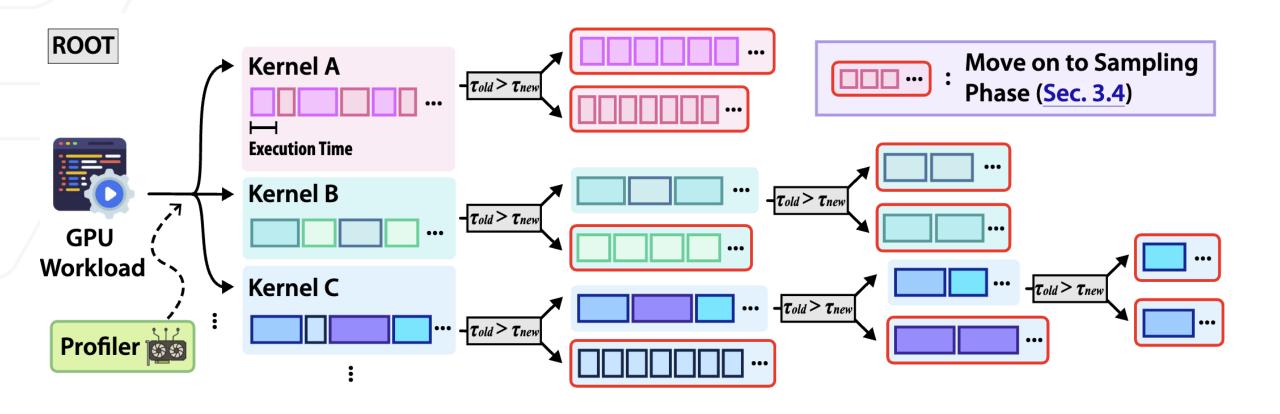
ROOT: Fine-grained hierarchical kernel clustering



Hierarchical clustering of ROOT

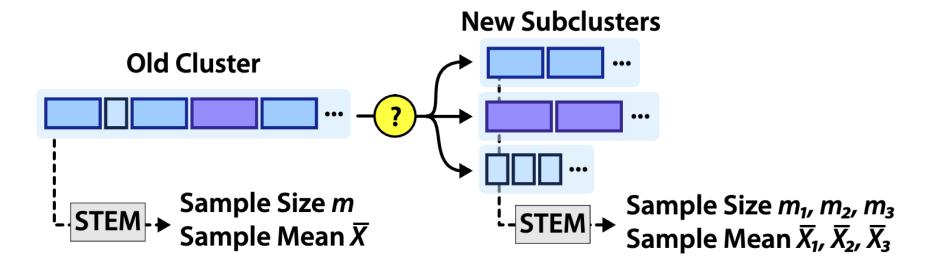


Hierarchical clustering of ROOT



Deriving the ROOT

ROOT leverages **STEM** to estimate whether splitting will help on kernel sampling.



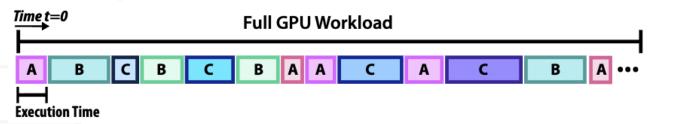
Compare the simulation time $(\tau)^*$: $\tau_{old} = m\bar{X}$

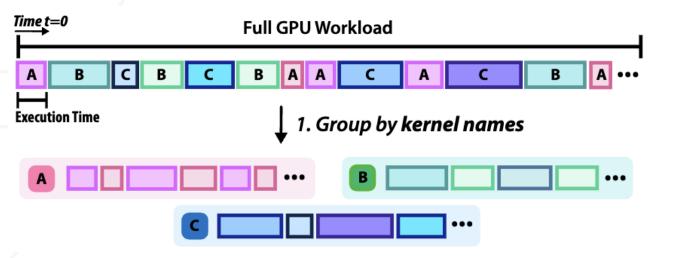
$$\tau_{new} = \sum_{i} m_i \bar{X}_i$$

 \rightarrow If $\tau_{old} > \tau_{new}$, we can save simulation time.

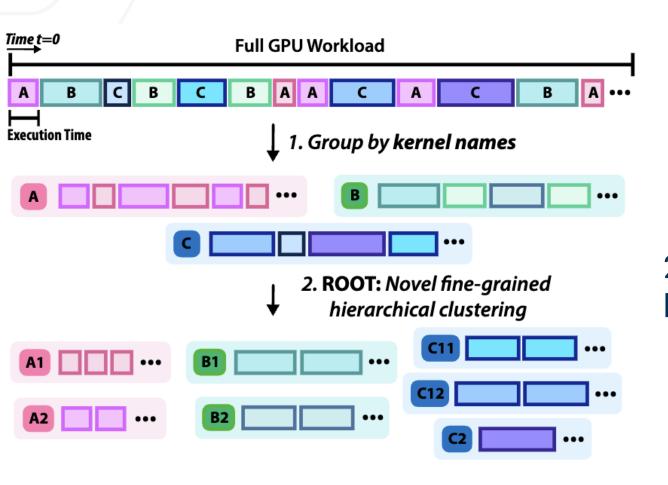
20

^{*} We use kernel latency as a heuristic for estimating the simulation time.

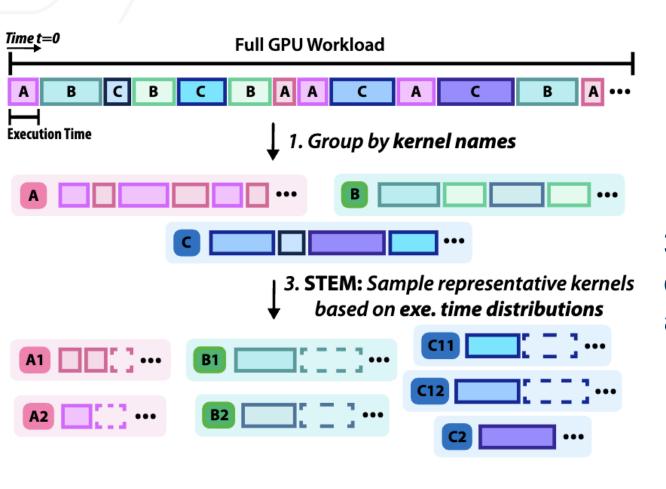




1. Group kernels by kernel names.



2. ROOT **additionally separates** runtimeheterogenous kernels into different groups.



3. STEM selects the **optimal sample size** of each group for the best speedup and accuracy.

Evaluation of STEM+ROOT

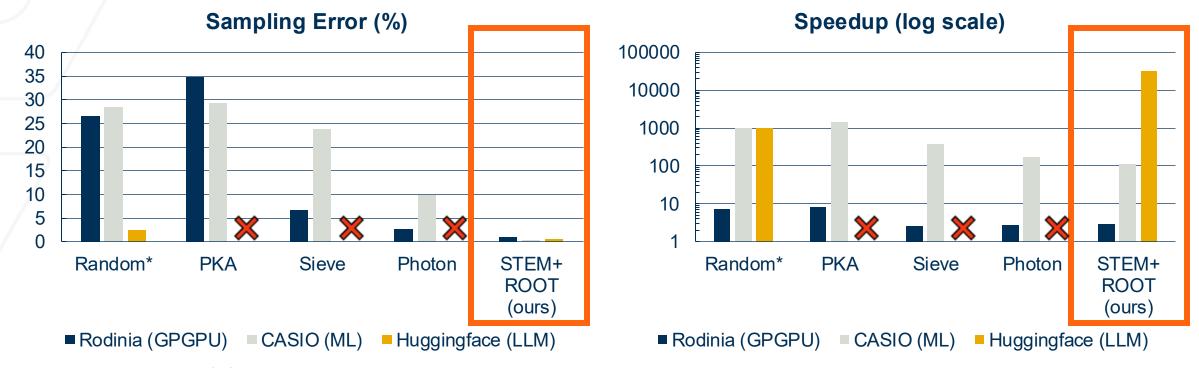
Evaluated GPU workloads:

- Rodinia* (GPGPU workloads)
- Casio** (ML workloads)
- Huggingface (Large-scale LLM/ML workloads)

Baseline methods:

- Random sampling
- PKA [MICRO '20]
- Sieve [ISPASS '23]
- Photon [MICRO '23]

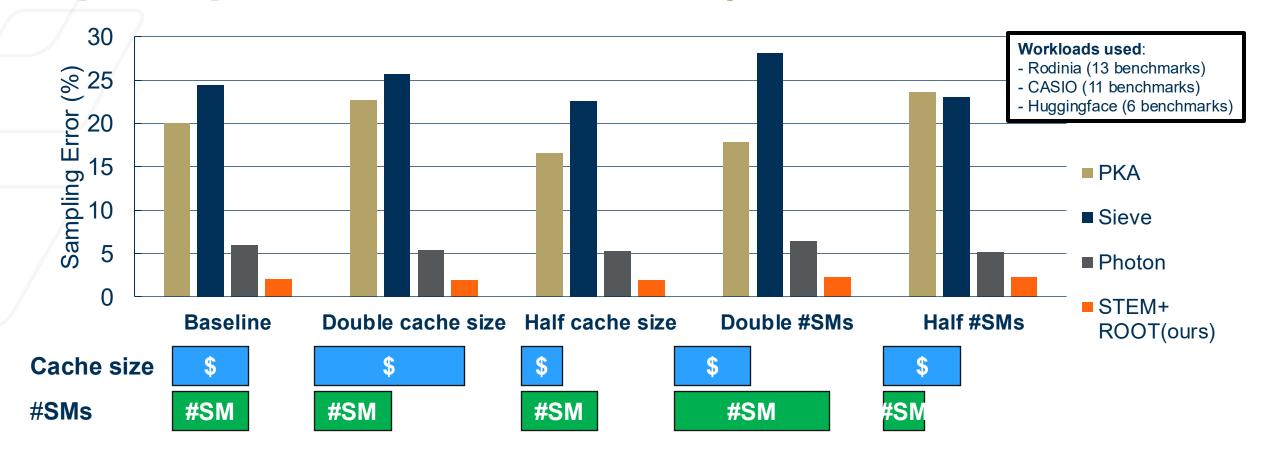
Speedup & Error validation on real HWs



X: Infeasible due to significant profiling or sampling process overhead

• STEM+ROOT achieves significantly lower sampling error with comparable speedup.

Speedup & Error validation on cycle-level simulators



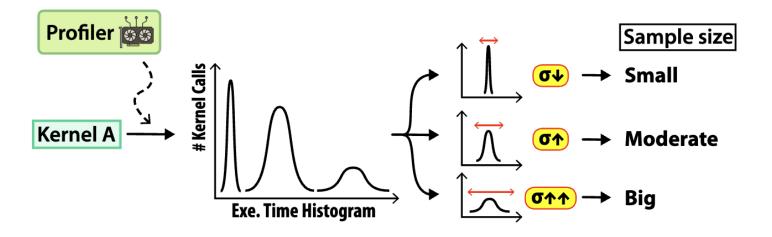
- Kernel's exe. time distribution reveals useful information about its characteristics.
- Adaptive sample size stays robust under HW (compute/memory) changes.

More details & evaluation results in our paper!

- Mathematical modeling and proofs on statistical sampling
- Sensitivity analysis on changing the error bound
- Evaluating STEM on a GPU with kernel profiles from a different GPU
- Evaluation on microarchitecture metrics (Cache hit rate, # instrs, etc.)
- Workload profiling overhead comparison for sampling
- and more.

Conclusion

- Problem: Tradeoff between speedup and accuracy in sampling for simulations.
- Idea: Leverage kernels exe. time distribution to select representative kernels.



- STEM: Optimal sample size selection with bounded sampling error.
- ROOT: Hierarchical clustering for distinguishing runtime-heterogeneous kernels.
- Result: Fast, accurate and scalable kernel sampling for large-scale GPU workloads
 - Evaluated 30 GPU benchmarks, STEM+ROOT achieves <1% error with high speedup.

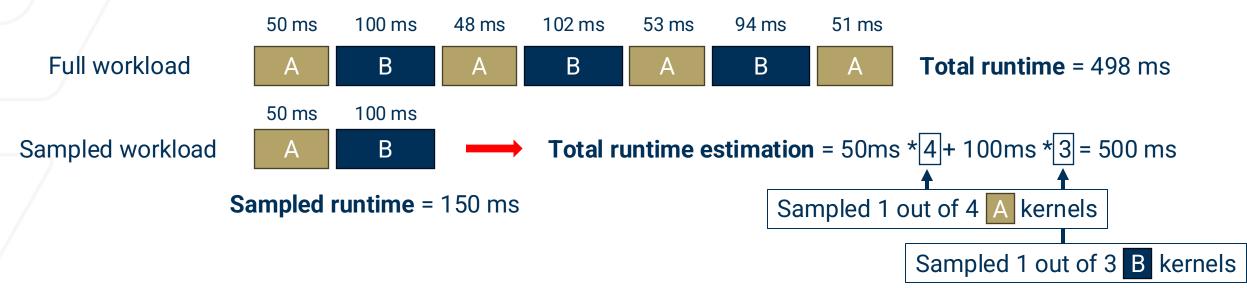
Thank you!

Questions?

- Presenter: Euijun Chung (euijun@gatech.edu)

Backup slides

Kernel-level sampling for GPU workloads

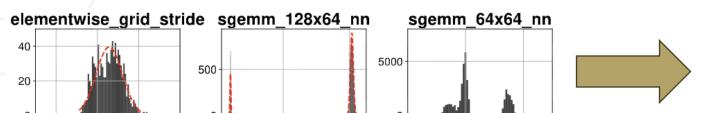


- Speedup over full simulation $\approx \frac{498}{150} = 3.32$
- Sampling error = $\frac{|500-498|}{498} \times 100(\%) = 0.4\%$

Can we make the kernel sampling **fast** and **accurate** by leveraging the characteristics of **large-scale GPU workloads**?

orgia

Question: What if we are sampling kernels from multiple clusters at the same time?



Sample m1, m2, m3 kernels from each cluster

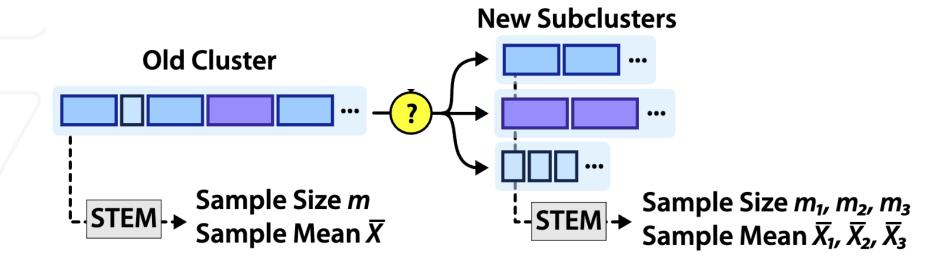
Optimization problem:

Solution (Using KKT Conditions):

$$m_{i} = \left\lceil \frac{\sqrt{\sum_{j} a_{j} b_{j}}}{c} \cdot \sqrt{\frac{b_{i}}{a_{i}}} \right\rceil \text{ for } \forall i \in \{0, ..., k-1\}$$

$$a_i \equiv \mu_i, \, b_i \equiv N_i^2 \sigma_i^2$$
, and $c \equiv (\epsilon \sum_i N_i \mu_i / z_{1-\alpha/2})^2$

Deriving the ROOT

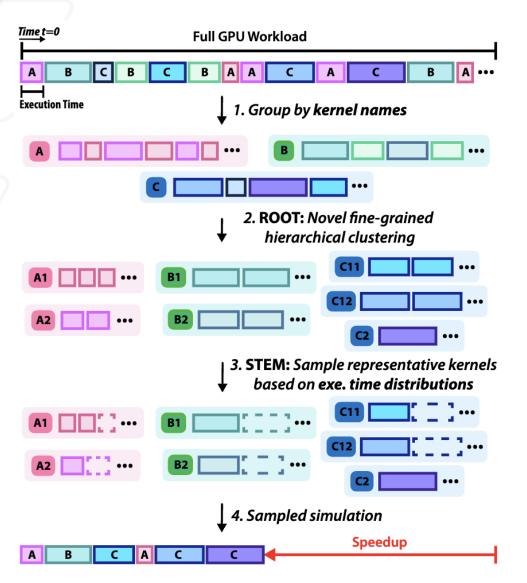


Compare the speedup:

$$\tau_{old} = m\bar{X} = \lceil (z_{1-\alpha/2}\sigma/\mu\epsilon)^2 \rceil \cdot \bar{X}$$

$$\tau_{new} = \sum_{i} m_{i} \bar{X}_{i} = \sum_{i} \left| \frac{\sqrt{\sum_{j} a_{j} b_{j}}}{c} \cdot \sqrt{\frac{b_{i}}{a_{i}}} \right| \cdot \bar{X}_{i}$$

Kernel-level sampling of GPU workloads





✓ Sampling error is minimal (bounded).

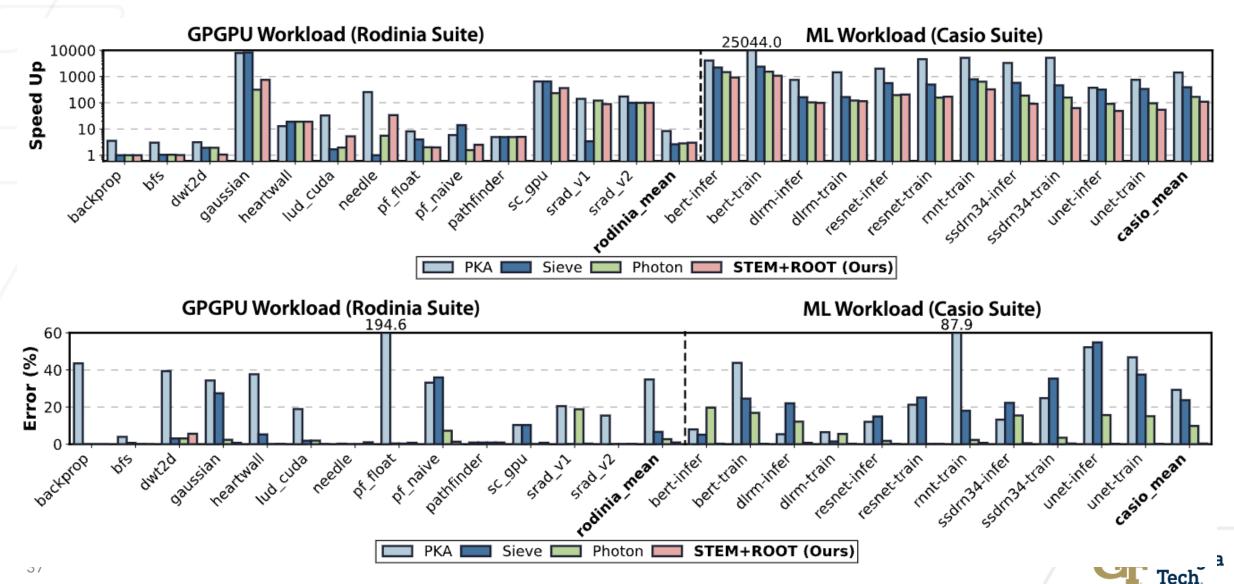
Baseline kernel sampling methods for GPU workloads

Sampling Methods	PKA [2]	Sieve [24]	Photon [21]	STEM+ROOT (ours)	
Kernel signature	12 instr. level metrics	Kernel name &	GPU Basic Block Vector (BBV)	Kernel name &	
		Num. of instrs	GPO Basic Block vector (BBV)	Exe. time distribution	
Clustering	k-means	Hand-tuned,	Find a kernel with	Fine-grained hierarchical (ROOT)	
		based on CoV (σ/μ)	similar BBV and #warps		
Kernel sample size	Single per cluster,	Single per cluster,	(95% threshold)	Adaptive sampling with statistically	
	first chronological	first chronological	(93% threshold)	determined sample size (STEM)	
Profiling granularity	Instr. count and	Instr. count per warp	Basic block count per warp	Execution time per kernel	
	statistics per warp	msti. count per warp	Basic block could per warp	Execution time per kernet	
Scalability for	Very low	Low	Low	High	
large-scale workloads			Low	I ngn	

Limitations on previous works:

- PKA, Sieve, and Photon all rely on static code-level analysis, which fail to capture runtime heterogeneity of GPU kernels
- PKA and Sieve rely on heavy profiling of instr-level metrics
- Photon's BBV comparions between kernels involve $O(N^2d)$ computations.
 - N = Number of kernels, d = BBV dimension

Speedup & Error validation



Evaluations on Microarchitectural metrics

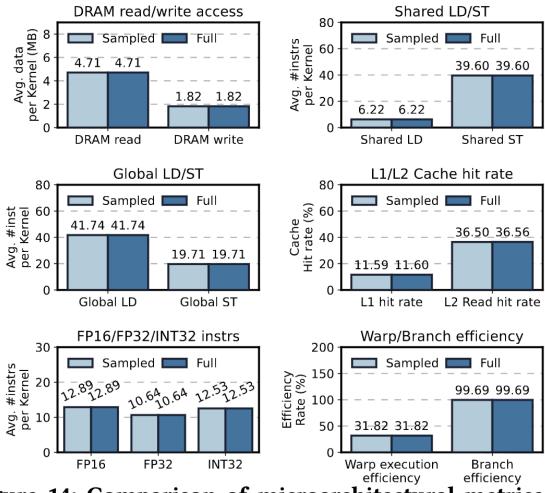


Figure 14: Comparison of microarchitectural metrics between the full workload and the sampled workload. We used the bert_infer workload of the CASIO benchmark suite.

Profiling overhead

Sampling	Profiler used,	Rodinia	CASIO	Huggingface
methods metrics collecte		(GPGPU)	(ML)	(LLM & ML)
PKA [2]	NCU, collecting 12 metrics	35.57×	3704.23×	N/A
Sieve [24]	NVBit, collecting		293.58×	N/A
	num. of instrs	94.14×		
Photon [21]	NVBit, collecting	12.81×	38.58×	N/A
	& processing BBVs	12.01		
STEM	STEM NSYS, collecting (ours) kernel exe. time		5.53×	1.33×
(ours)				

Using execution time as a key parameter gives a huge improvement in scalability

