
Swift and Trustworthy Large-Scale GPU Simulation with
Fine-Grained Error Modeling and Hierarchical Clustering

Euijun Chung, Seonjin Na, Sung Ha Kang, Hyesoon Kim

Georgia Institute of Technology

2025 IEEE/ACM International Symposium on Microarchitecture

Cycle-level simulations enable fast validation of new (micro)architecture designs.

Problem: Cycle-level simulators are too slow!

A 1-second workload on a real GPU can take several days on a simulator.
• For trace-based simulators, trace size grows along with workload size.

GPU microarchitecture simulation

2

Architectural
design changes

IPC
Cache Hit Rate
Num of Instrs
Power usage

…

Cycle-level GPU Simulator

Kernel-level sampling for GPU workloads

• Kernel-level sampling: reducing workload size by sampling important kernels.

• Idea: Instead of running the full workload, skip the repeating kernels.
• Pros: Simulation acceleration, reduced trace size / Cons: Simulation accuracy

3

A B

A B A B A

Full workload

A B

50 ms 100 ms

48 ms 102 ms 53 ms 94 ms 51 ms50 ms 100 ms

A B A B A

48 ms 102 ms 53 ms 94 ms 51 ms

Sampled workload

Total runtime = 498 ms

Sampled runtime = 203 ms

Kernel-level sampling for GPU workloads

• Kernel-level sampling: reducing workload size by sampling important kernels.

• Idea: Instead of running the full workload, skip the repeating kernels.
• Pros: Simulation acceleration, reduced trace size / Cons: Simulation accuracy

4

A B

A B A B A

Full workload

A B

50 ms 100 ms

48 ms 102 ms 53 ms 94 ms 51 ms50 ms 100 ms

A B A B A

48 ms 102 ms 53 ms 94 ms 51 ms

Sampled workload

Tradeoff on speedup and accuracy:
More kernel samples make the sampled simulation longer but accurate.

Total runtime = 498 ms

Sampled runtime = 203 ms

GPU Kernels’ execution time distributions

5

Observation: Identical GPU kernels show huge variation across invocations.

Idea: Leverage kernel exe. time distributions as a key signature to sample kernels.

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

Narrow Wide Multiple peaks

GPU Kernels’ execution time distributions

6

Observation: Identical GPU kernels show huge variation across invocations.

Idea: Leverage kernel exe. time distributions as a key signature to sample kernels.

• Narrow: constant exe. time → less samples

• Wide: variable performance → more samples

• Multiple: kernel in multiple contexts → separate peaks into clusters then sample

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

Narrow Wide Multiple peaks

GPU Kernels’ execution time distributions

7

Observation: Identical GPU kernels show huge variation across invocations.

Idea: Leverage kernel exe. time distributions as a key signature to sample kernels.

• Narrow: constant exe. time → less samples

• Wide: variable performance → more samples

• Multiple: kernel in multiple contexts → separate peaks into clusters then sample

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

Narrow Wide Multiple peaks

Question 1: Based on their distribution, how many kernels to sample?
Question 2: How to maximize the speedup while the error is minimal?

Determining the sample size

Question 1: Based on their distribution, how many kernels to sample?

Solution: Statistical approach based on kernel profiles.

Adaptive sample size → speedup is maximized while sampling error is minimal.

8

Applying the Central Limit Theorem (CLT)

9

Central Limit Theorem: The mean of samples will always follow a Gaussian distribution
as the sample size 𝑚 → ∞.

m kernel samples

Average kernel execution time follows a
Gaussian distribution ഥ𝑿~𝑵(𝝁, 𝝈𝟐/𝒎).

Applying the Central Limit Theorem (CLT)

10

Central Limit Theorem: The mean of samples will always follow a Gaussian distribution
as the sample size 𝑚 → ∞.

We analytically calculate the relationship between the sample size (m) and the error (e).

• The minimum number of samples to ensure the error bound ϵ:

m kernel samples

Average kernel execution time follows a
Gaussian distribution ഥ𝑿~𝑵(𝝁, 𝝈𝟐/𝒎).

Assuming Gaussian distribution

Error bound (e.g. 5%)

STEM: Statistical Error Model for kernel sampling

11

Optimizing for Multiple Kernels: minimize sim. time while the total error is bounded.

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

Kernel A

Kernel B

m1?

m2?

STEM: Statistical Error Model for kernel sampling

12

Optimizing for Multiple Kernels: minimize sim. time while the total error is bounded.

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

Kernel A

Kernel B

m1?

m2?

STEM: Statistical Error Model for kernel sampling

13

Optimizing for Multiple Kernels: minimize sim. time while the total error is bounded.

#
k

e
rn

e
l c

a
lls

Kernel A Kernel B

STEM’s output:
- Kernel A: 10 samples
- Kernel B: 50 samples

Kernel execution time (us)

Problem: Some kernels favor splitting before sampling with STEM.

Goal: Distinguish each peak into separate clusters before sampling.

14

Optimizing STEM for runtime-heterogeneous kernels

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

STEM

Sample 100 kernels

Problem: Some kernels favor splitting before sampling with STEM.

Goal: Distinguish each peak into separate clusters before sampling.

15

Optimizing STEM for runtime-heterogeneous kernels

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

STEM

Sample 100 kernels

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

STEM STEM STEM

15 kernels 10 kernels 10 kernels

→ 35 kernels in total!

Clustering

Problem: Some kernels favor splitting before sampling with STEM.

Goal: Distinguish each peak into separate clusters before sampling.

16

Optimizing STEM for runtime-heterogeneous kernels

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

STEM

Sample 100 kernels

Kernel execution time (us)

#
k

e
rn

e
l c

a
lls

STEM STEM STEM

15 kernels 10 kernels 12 kernels
Question 1: The optimal number of subclusters is unknown.

Question 2: How to optimize clustering for sampling?

ROOT: Fine-grained hierarchical kernel clustering

17

Hierarchical clustering of ROOT

18

At every step: Check whether the splitting helps reducing sim. time

Hierarchical clustering of ROOT

19

Deriving the ROOT

20

Compare the simulation time (τ)*:

ROOT leverages STEM to estimate whether splitting will help on kernel sampling.

→ If 𝜏𝑜ld > 𝜏𝑛ew,
 we can save simulation time.

* We use kernel latency as a heuristic for estimating the simulation time.

Summary of STEM + ROOT

21

Summary of STEM + ROOT

22

1. Group kernels by kernel names.

Summary of STEM + ROOT

23

2. ROOT additionally separates runtime-
heterogenous kernels into different groups.

Summary of STEM + ROOT

24

3. STEM selects the optimal sample size
of each group for the best speedup and
accuracy.

Evaluation of STEM+ROOT

Evaluated GPU workloads:
• Rodinia* (GPGPU workloads)

• Casio** (ML workloads)

• Huggingface (Large-scale LLM/ML workloads)

Baseline methods:
• Random sampling

• PKA [MICRO ‘20]

• Sieve [ISPASS ‘23]

• Photon [MICRO ‘23]

25 * S. Che et al., Rodinia: A benchmark suite for heterogeneous computing, 2009
** M. Davies et al., A Journey of a 1,000 Kernels Begins with a Single Step: A Retrospective of Deep Learning on
GPUs, ASPLOS 2024

Speedup & Error validation on real HWs

26

• STEM+ROOT achieves significantly lower sampling error with comparable speedup.

1

10

100

1000

10000

100000

Random* PKA Sieve Photon STEM+
ROOT
(ours)

Speedup (log scale)

Rodinia (GPGPU) CASIO (ML) Huggingface (LLM)

0

5

10

15

20

25

30

35

40

Random* PKA Sieve Photon STEM+
ROOT
(ours)

Sampling Error (%)

Rodinia (GPGPU) CASIO (ML) Huggingface (LLM)

: Infeasible due to significant profiling or sampling process overhead

0

5

10

15

20

25

30

Baseline Double cache size Half cache size Double #SMs Half #SMs

S
a
m

p
lin

g
 E

rr
o
r

(%
)

PKA

Sieve

Photon

STEM+
ROOT(ours)

Speedup & Error validation on cycle-level simulators

• Kernel’s exe. time distribution reveals useful information about its characteristics.

• Adaptive sample size stays robust under HW (compute/memory) changes.
27

Workloads used:

- Rodinia (13 benchmarks)

- CASIO (11 benchmarks)

- Huggingface (6 benchmarks)

$

#SM

Cache size

#SMs

$

#SM

$

#SM

$

#SM

$

#SM

More details & evaluation results in our paper!

• Mathematical modeling and proofs on statistical sampling

• Sensitivity analysis on changing the error bound

• Evaluating STEM on a GPU with kernel profiles from a different GPU

• Evaluation on microarchitecture metrics (Cache hit rate, # instrs, etc.)

• Workload profiling overhead comparison for sampling

• and more.

28

Conclusion

• Problem: Tradeoff between speedup and accuracy in sampling for simulations.

• Idea: Leverage kernels exe. time distribution to select representative kernels.

• STEM: Optimal sample size selection with bounded sampling error.

• ROOT: Hierarchical clustering for distinguishing runtime-heterogeneous kernels.

• Result: Fast, accurate and scalable kernel sampling for large-scale GPU workloads
• Evaluated 30 GPU benchmarks, STEM+ROOT achieves <1% error with high speedup.29

Thank you!

Questions?

- Presenter: Euijun Chung (euijun@gatech.edu)

Backup slides

Kernel-level sampling for GPU workloads

• Speedup over full simulation ≈
498

150
= 3.32

• Sampling error =
|500−498|

498
× 100(%) = 0.4%

A B A B A B AFull workload

A BSampled workload

50 ms 100 ms 48 ms 102 ms 53 ms 94 ms 51 ms

Total runtime = 498 ms

50 ms 100 ms

Total runtime estimation = 50ms * 4 + 100ms * 3 = 500 ms

Sampled 1 out of 4 kernelsA

Sampled 1 out of 3 kernelsB

Sampled runtime = 150 ms

32

Can we make the kernel sampling fast and accurate by leveraging
the characteristics of large-scale GPU workloads?

STEM: Statistical Error Model for kernel sampling

33

Question: What if we are sampling kernels from multiple clusters at the same time?

Sample m1, m2, m3 kernels from each cluster

Solution (Using KKT Conditions):Optimization problem:

Deriving the ROOT

34

Compare the speedup:

Kernel-level sampling of GPU workloads

35

 Speedup =

 Sampling error is minimal (bounded).

Baseline kernel sampling methods for GPU workloads

Limitations on previous works:

• PKA, Sieve, and Photon all rely on static code-level analysis, which fail to
capture runtime heterogeneity of GPU kernels

• PKA and Sieve rely on heavy profiling of instr-level metrics

• Photon’s BBV comparions between kernels involve 𝑶 𝑵𝟐𝒅 computations.
• N = Number of kernels, d = BBV dimension

Speedup & Error validation

37

Baseline methods: PKA [Micro ‘20], Sieve [ISPASS ‘23], Photon [MICRO ‘23]

Evaluations on Microarchitectural metrics

Profiling overhead

Using execution time as a key parameter gives a huge improvement in scalability

	Slide 1: Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering
	Slide 2: GPU microarchitecture simulation
	Slide 3: Kernel-level sampling for GPU workloads
	Slide 4: Kernel-level sampling for GPU workloads
	Slide 5: GPU Kernels’ execution time distributions
	Slide 6: GPU Kernels’ execution time distributions
	Slide 7: GPU Kernels’ execution time distributions
	Slide 8: Determining the sample size
	Slide 9: Applying the Central Limit Theorem (CLT)
	Slide 10: Applying the Central Limit Theorem (CLT)
	Slide 11: STEM: Statistical Error Model for kernel sampling
	Slide 12: STEM: Statistical Error Model for kernel sampling
	Slide 13: STEM: Statistical Error Model for kernel sampling
	Slide 14
	Slide 15
	Slide 16
	Slide 17: ROOT: Fine-grained hierarchical kernel clustering
	Slide 18: Hierarchical clustering of ROOT
	Slide 19: Hierarchical clustering of ROOT
	Slide 20: Deriving the ROOT
	Slide 21: Summary of STEM + ROOT
	Slide 22: Summary of STEM + ROOT
	Slide 23: Summary of STEM + ROOT
	Slide 24: Summary of STEM + ROOT
	Slide 25: Evaluation of STEM+ROOT
	Slide 26: Speedup & Error validation on real HWs
	Slide 27: Speedup & Error validation on cycle-level simulators
	Slide 28: More details & evaluation results in our paper!
	Slide 29: Conclusion
	Slide 30: Thank you!
	Slide 31: Backup slides
	Slide 32: Kernel-level sampling for GPU workloads
	Slide 33: STEM: Statistical Error Model for kernel sampling
	Slide 34: Deriving the ROOT
	Slide 35: Kernel-level sampling of GPU workloads
	Slide 36: Baseline kernel sampling methods for GPU workloads
	Slide 37: Speedup & Error validation
	Slide 38: Evaluations on Microarchitectural metrics
	Slide 39: Profiling overhead

