
Swift and Trustworthy Large-Scale GPU Simulation with
Fine-Grained Error Modeling and Hierarchical Clustering

Euijun Chung

euijun@gatech.edu

Georgia Institute of Technology

Atlanta, Georgia, USA

Seonjin Na

seonjin.na@gatech.edu

Georgia Institute of Technology

Atlanta, Georgia, USA

Sung Ha Kang

kang@math.gatech.edu

Georgia Institute of Technology

Atlanta, Georgia, USA

Hyesoon Kim

hyesoon@cc.gatech.edu

Georgia Institute of Technology

Atlanta, Georgia, USA

Abstract
Kernel-level sampling is an effective technique for running large-

scale GPU workloads on cycle-level simulators by selecting a rep-

resentative subset of kernels, thereby significantly reducing simu-

lation complexity and runtime. However, in large-scale GPU work-

loads, kernels often exhibit heterogeneous runtime behaviors where

some identical kernels show fluctuating performance, while others

display multiple performance saturation points. We find that the

kernel execution time distribution serves as a powerful signature

for addressing this complexity. By carefully analyzing execution

time distributions, we show that heterogeneous kernels can be ef-

fectively classified and sampled, significantly reducing errors in

sampled simulations.

In this paper, we propose STEM+ROOT, a fine-grained kernel-

level sampling methodology that enables trustworthy sampled sim-

ulation by achieving minimal sampling error. STEM leverages the

distribution of kernel execution times as a signature and applies

statistical techniques to determine optimal sample sizes with tight

error bounds. ROOT is a novel hierarchical clustering framework

built on top of STEM that ensures the sampled kernels faithfully

represent the entire workload in terms of both execution time and

a wide range of microarchitectural metrics. STEM achieves high

scalability for large-scale GPU workloads by significantly reduc-

ing offline profiling overhead for collecting kernel execution times.

When evaluated on the latest GPU benchmark suite, our proposed

methodology reduces sampling error by 27.6-81.9× and achieves 7-

600× faster kernel profiling compared to existing approaches while

achieving comparable performance.

CCS Concepts
• Computing methodologies→Modeling and simulation; •
Computer systems organization→ Distributed architectures;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MICRO 2025, Seoul, South Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-X-XXXX-XXXX-X/2025/XX

https://doi.org/XXXXXXX.XXXXXXX

Heterogeneous (hybrid) systems; • Mathematics of computing →
Probabilistic representations.

Keywords
GPU, Workload sampling, Simulation methodology

1 Introduction
Cycle-level simulations play a critical role in computer architec-

ture research, enabling detailed evaluation of microarchitectural

changes, design space exploration, power and energy estimation,

and more [7, 18, 22]. While widely adopted tools such as AccelSim

[15], MGPUSim [37], and MacSim [16] support cycle-level GPU sim-

ulation, the growing computational demands of modern machine

learning (ML) workloads have made it increasingly challenging to

simulate them effectively [25]. Our observations show that even

a 1-second large language model (LLM) inference workload can

require several days of simulation, as the simulator must update the

microarchitectural state of the GPU at every cycle. Without effec-

tive optimization techniques, this challenge limits the practicality

of simulation-based performance modeling and exacerbates the gap

between workloads used in real GPU deployments and those used

in simulators.

Workload sampling is a widely adopted technique for accelerat-

ing cycle-level simulations by reducing the workload size while pre-

serving its unique runtime characteristics. This approach has been

extensively studied in both CPU [3, 9, 33, 43] and GPU [2, 10, 21, 24]

domains. The core idea is to divide the workload into multiple in-

tervals and extract a signature from each interval that captures its

microarchitectural runtime behavior. A subset of representative

intervals is then selected for simulation, and the results are ex-

trapolated to estimate the performance of the full workload. While

selecting less representative intervals can compromise accuracy,

it enables substantial reductions in simulation time compared to

running the full workload.

Kernel-level sampling is widely used in GPU simulation to im-

prove scalability, but the sampling error can be significant if the

kernel signatures used to select representative kernels fail to cap-

ture their runtime behavior. Previous approaches have relied on

various instruction-level and control-flow-related metrics as kernel

signatures [2, 10, 21, 24]. Although these metrics capture the pro-

gram characteristics related to control flow graphs or static code

features, we observe that they often fail to capture input-dependent

1

https://orcid.org/0009-0002-7380-3552
https://orcid.org/0009-0009-0734-8126
https://orcid.org/0000-0002-0312-6595
https://orcid.org/0000-0002-6061-7825
https://doi.org/XXXXXXX.XXXXXXX

MICRO 2025, October 18–22, 2025, Seoul, South Korea Chung et al.

18 19 20
0

200

400
max_pool

5 10 15
0

2000

bn_fw_inf

1.5 2.0 2.5 3.0 3.5
0

200

unrolled_elementwise

50 60 70 80
0

20

40

elementwise_grid_stride

20 30
0

500

sgemm_128x64_nn

6 7 8
0

5000

sgemm_64x64_nn

Kernel Execution Time (us)

Ke

rn
el

 C
al

ls

Figure 1: Execution time histograms of repeated GPU kernel
calls from ML workloads (CASIO benchmark suite). Kernel
names shown above each plot. Runtime heterogeneity ob-
served in the execution times of repeatedly executed kernels.

characteristics at runtime, which are often a more significant source

of variation in modern GPU applications. For example, even the

same GPU kernel, such as gemm can be invoked repeatedly in a

fixed compute graph but show significantly varying performance

due to microarchitectural effects. Although kernel code and control

flow remain constant, factors such as input sparsity, tensor layout,

memory alignment, and cache locality can greatly affect execution

efficiency. This highlights the need for a new kernel signature that

can differentiate these performance-influencing factors.

We observe that ML workloads [6] on GPUs involve a substantial

number of repeated kernel invocations [27, 30] due to extensive

batching and layer-level iterations. However, the same kernel of-

ten exhibits heterogeneous runtime behaviors across invocations,

which poses a significant challenge for kernel-level sampling since

the samples need to capture all the different ways the kernel be-

haves during the workload. Surprisingly, we discovered that the

distributions of kernel execution times offer powerful insights in

categorizing these differences, enabling more accurate sampling

strategies when used. For instance, if the execution time distribu-

tion of a kernel exhibits distinct peaks, this indicates the presence

of multiple performance saturations–each peak reflecting the ker-

nel’s operation in a different context within a workload. In such

cases, separate samples must be taken from each peak to accurately

capture these distinct behaviors. Conversely, when the same kernel

exhibits a large standard deviation in execution time, it indicates

significant runtime variability–often caused by its memory-bound

nature and fluctuatingmemory latencies. In these scenarios, a larger

number of samples is required to fully capture the performance

variability, ensuring statistically confident simulation results.

Based on these observations, we propose STEM+ROOT: a kernel-

sampling technique that leverages the execution time distribution

to extract microarchitectural insights from kernels and perform

fine-grained sampling. Our approach uses hierarchical clustering

and statistical error modeling to fully capture the runtime hetero-

geneity shown in GPU kernel execution profiles, thereby accurately

characterizing the overall behavior of the workload for sampled

simulation. STEM employs statistical error modeling to charac-

terize each kernel’s runtime behavior and determine the optimal

sample size that balances accuracy and efficiency. ROOT refines

the process by employing fine-grained hierarchical clustering to

determine the optimal number of kernel clusters, selecting repre-

sentative kernels that mirror the full workload’s behavior in terms

Pro�ler

Kernel A

Exe. Time Histogram

Moderate

Big

Small

��

���

Sample size

#K
er

ne
l C

al
ls ��

Figure 2: Motivation on execution-time-based kernel sam-
pling. Kernels show wide variability and/or multiple peaks,
requiring both fine-grained clustering and sampling for ac-
curate sampled simulation.

of both execution time and microarchitectural metrics. Together,

this approach delivers significant simulation acceleration while

ensuring that the sampling error is minimized. Furthermore, be-

cause execution time data can be gathered with lightweight profiler

[1, 29] and a near-linear algorithm, STEM scales effectively to large-

scale workloads with millions of kernel invocations. Our evaluation

on GPGPU benchmarks [4], ML benchmarks [6] and large-scale

LLM/ML workloads [12] demonstrates that STEM+ROOT signifi-

cantly reduces sampling error compared to prior methods, while

achieving comparable speedups with substantially lower profiling

overhead.

2 Observation and Motivation
Our work leverages the execution time distribution of GPU kernels

to enable accurate kernel-level sampling. This section describes our

observations and motivations on how execution time distributions

provide valuable insights for kernel-level sampling and why this

approach can be broadly generalized across various applications.

2.1 Heterogeneous runtime behavior of
repeated GPU kernels

Observation 1: In large-scale GPUworkloads with a massive number

of repeated kernel invocations, identical GPU kernels often exhibit

substantial variation in execution time across invocations. Figure 1

shows execution time histograms of several kernels sampled from

ML workloads in CASIO suite [6]. Some histograms display widely

or narrowly spread distributions, while others exhibit multiple

distinct peaks. This variability is especially common in modern

GPU workloads compiled from high-level frameworks such as Py-

Torch [30], where compute graphs translate into numerous kernel

launches from a relatively small set of kernel types. Even for kernels

like sgemm or winograd, launched with identical code and consis-

tent parameters (e.g., grid size, block size, and instruction count),

runtime behavior can vary greatly depending on the context in

which the kernel is used and the specific input data it processes.

This runtime heterogeneity arises because the same kernel (e.g.,

sgemm) is invoked repeatedly in different contexts as compute

graphs are translated into microarchitecture-specific GPU kernels.

Although the kernel logic and launch configurations remain un-

changed, each invocation often operates on different types of data

(e.g., activations, weights, or biases in neural networks) residing in

various memory regions such as global memory, shared memory, or

L1/L2 cache. These differences in input characteristics and memory

locality lead to diverse execution behaviors. Moreover, as shown

2

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO 2025, October 18–22, 2025, Seoul, South Korea

in the sgemm_128x64 histogram in Figure 1, the presence of multi-

ple narrow, distinct performance peaks suggests that the kernel is

used in at least two different contexts within the workload. In such

cases, these distinct behaviors should be treated separately during

sampled simulation to ensure accuracy. However, relying solely on

code-level analysis makes it difficult to capture this heterogene-

ity as such methods struggle to account for dynamic factors like

memory access patterns, input data characteristics, and runtime

dependencies that vary based on the kernel’s execution context.

2.2 Extracting kernel’s runtime diversity with
exe. time distributions

Observation 2: Kernel execution time distribution is a powerful sig-

nature that can effectively reveal such heterogeneous runtime char-

acteristics of kernels. The execution time reflects its usage context

within a given workload, enabling us to differentiate identical ker-

nels operating under different conditions. For example, as shown in

Figure 1, the three clearly separated peaks in the histogram suggest

that the same bn_fw_inf kernel is used in three different runtime

contexts through tens of thousands of repeated kernel calls. This

indicates that the kernel shows different execution time, likely due

to different input or usage patterns within its workload context. By

applying clustering methods to group kernels in each peak, we can

easily classify the kernel’s usage and take separate samples from

each peak for accurate kernel-level sampling.

Moreover, statistical measures such as standard deviation offer

valuable insights into kernel performance variability. For exam-

ple, kernels with wide execution time distributions (e.g. max_pool
in Figure 1) exhibit significant runtime jitter. This fluctuation is

often due to the kernel’s memory-bound nature and its sensitiv-

ity to microarchitectural factors. In such cases, a larger sample

size is required to capture the full range of variability and ensure

statistical confidence in sampled simulation results. In contrast,

kernels like sgemm_128x64_nn, which show narrow peaks, suggest

more stable performance. For such kernels, fewer samples per peak

are sufficient to maintain high accuracy for sampled simulation.

Note that maxpool and GEMM operations are generally known

to be memory-bound and compute-bound in convolutional neural

network (CNN) workloads, respectively.

Figure 2 summarizes our key insight on how we can leverage the

execution time distributions to perform fine-grained clustering and

sampling. As execution time profiles can simultaneously exhibit

multiple performance peaks and large standard deviations at the

same time, a solution that can address both dimensions is necessary.

This motivates the design of STEM+ROOT, where ROOT clusters

kernels based on execution profiles, and STEM dynamically adjusts

sample sizes according to observed runtime variability.

2.3 Using execution time as a kernel signature
for robust and accurate sampling

We claim that kernel execution time distributions and their derived

statistical measures are robust signatures for kernel sampling, even

across different GPU microarchitectures. While execution time is

inherently hardware-dependent, the distribution of execution times

yields meaningful, relatively hardware-agnostic insights. Statistical

features such as standard deviation, coefficient of variation (CoV),

and the number of peaks (as shown in Figure 1) capture important

behavioral properties: such as memory or compute intensity, work-

load phase behavior, or input-dependent memory access patterns

that are not tied to the absolute timing values.

Our work leverages these distribution-based features to guide

sampling decisions, allowing it to remain effective even when the

hardware changes. Instead of comparing kernels solely based on

their static information, our algorithm adaptively increases the sam-
ple size for kernels that are more sensitive to microarchitectural

changes (e.g., memory-bound kernels) based on their runtime sta-

tistics, making it more likely to capture diverse runtime behaviors

even on new hardware or a system.We evaluate this claim in Sec. 4.5

by simulating design space exploration across architectures, and

we observe consistently low error rates, often outperforming prior

approaches that use microarchitecture-independent signatures. In

Sec. 5.1, while we discuss the potential limitations of using exe-

cution times for kernel sampling, we argue that exploiting these

statistics offers high achievements in robustness of our approach.

The rapid evolution of GPU architectures makes execution time

a more practical sampling metric than unstable low-level parame-

ters. In contrast to stable CPU ISAs, proprietary GPU ISAs change

significantly with each generation, rendering kernel signatures

based on instruction or basic-block counts unreliable. For example,

features introduced in NVIDIA’s Volta architecture, like Tensor

Cores (for FP8/BF16) [23] and warp-level primitives (vote, shfl)
[26, 32], can cause the same high-level source code to compile into

drastically different machine code with new performance behaviors.

Furthermore, recent studies show that GPUs even differ in how

they inject register dependency chains, further undermining archi-

tectural consistency [11]. Consequently, execution time provides a

more versatile and dependable signature for kernels.

3 STEM and ROOT methodology
STEM+ROOT is our kernel-level sampling solution that directly

leverages execution time data to perform fine-grained clustering

and sampling. Figure 3 illustrates an overview of our methodology.

First, kernel calls are grouped by their names, as most large-scale

GPUworkloads typically consist of numerous repetitive invocations

of the same kernel types. ROOT performs fine-grained hierarchical

clustering to classify kernels with different runtime behaviors, as

observed in Figure 1. STEM then applies precise statistical error

modeling to determine the optimal number of samples from each

cluster. This ensures minimal sampling error while achieving sub-

stantial simulation speedups. A key takeaway of our approach is

that it can provide theoretical error bounds, offering both trans-

parency and predictable accuracy for sampled simulation results.

Since STEM and ROOT are tightly integrated, we begin by de-

scribing the core methodology of STEM and subsequently illustrate

how ROOT leverages it to perform fine-grained clustering in the

following subsections.

3.1 Kernel-level sampling for GPU workloads
A GPU workload consists of many kernel invocations, often with

repeated executions of the same kernels. Running a full simula-
tion (simulating every kernel invocation in the workload without

sampling) can be prohibitively time-consuming. To address this,

kernel-level sampling selects a subset of kernel calls to simulate,

3

MICRO 2025, October 18–22, 2025, Seoul, South Korea Chung et al.

...

...

...

...
...

Full GPU WorkloadTime t=0

Speedup

2. ROOT: Novel �ne-grained
hierarchical clustering

3. STEM: Sample representative kernels
based on exe. time distributions

4. Sampled simulation

1. Group by kernel namesExecution Time

BA

A1

C

C11

A A A A AB BC C CCB B

...

... ...

...A2

B1

...B2
C12

C2

...

...A1
C11

...

... ...

...A2

B1

...B2
C12

C2

...

A B C A C C

Figure 3: Overview of the proposed methodology. ROOT ap-
plies hierarchical clustering on same kernels by execution
time to differentiate kernels with similar runtime behaviors.
STEM selects adaptive number of representative samples
from each cluster to enable fast and accurate simulation.

resulting in a so-called "sampled" simulation. The goal of sampled

simulation is to carefully select kernels that capture the runtime

characteristics of most workload phases, while minimizing the

length of the sampled simulation to reduce overall time.

After the sampled simulation, the total execution time (execution
time of the full simulation) can be estimated using a weighted sum.

Specifically, the total time is computed as the sum of the execution

times of the sampled kernels, each multiplied by a weight that

corresponds to the number of corresponding kernel invocations in

the full workload that the sample represents.

Let 𝑡∗ denote the ground-truth total execution time of the full

simulation, which is the valuewe aim to estimate. Let 𝑡
total

represent

the estimated execution time obtained from the sampled simulation,

computed as a weighted sum over the sampled kernels. We define

the sampling error 𝑒 between the estimated and ground-truth

total execution times as follows:

𝑒 ≡
���� 𝑡total − 𝑡∗𝑡∗

���� × 100(%). (1)

We use this sampling error to quantify the accuracy of the sam-

pled simulation relative to the full simulation.

3.2 STEM: Statistical Error Modeling for GPU
simulation

STEM is our statistical error model that leverages the Central Limit

Theorem (CLT) and KKT-solver to obtain the optimal sample sizes

for a set of kernels. The summary of STEM is shown in the upper

part of Figure 4. STEM demonstrates that leveraging execution time

distribution for workload sampling provides significant advantages

in terms of accuracy (Sec. 4.2), theoretical error bounds (Sec. 3.4),

and low profiling overhead (Sec. 4.7).

We begin with the simplest case, where 𝐶 is a set of invocations

of the same kernel. The objective is to select a subset of these invo-

cations for sampled simulation, but the key question is how many

samples are required. Specifically, we aim to determine the minimal

sample size𝑚 that ensures the sampling error remains within a

bound of 𝜖 . The error bound 𝜖 is a tunable parameter that works as

a desired upper bound on the theoretical sampling error, and can

be set to values such as 1% or 5%. According to the Central Limit

Theorem (CLT), the sample mean 𝑋 will always follow a normal

distribution, regardless of the original distribution of execution times
in 𝐶 . This powerful result holds under two key assumptions: (1)

the sample size is sufficiently large (rule of thumb is𝑚 ≥ 30), and

(2) the samples are independent and identically distributed (i.i.d.)

[38]. Fortunately, both conditions are satisfied in large-scale GPU

workloads. The massive degree of kernel invocations ensures the

first condition in most workloads, and the use of random sampling

with replacement satisfies the i.i.d. assumption. As a result, the

sample mean 𝑋 of kernel execution times follows a normal distri-

bution: 𝑋 ∼ N(𝜇, 𝜎2/𝑚), where 𝜇 and 𝜎2
denote the true mean and

variance of kernel execution times in 𝐶 [17].

The objective of kernel-level sampling is to estimate the total

execution time of GPU kernels using only a subset of sampled

executions [20]. Our estimation for the total execution time is

𝑡
total

= |𝐶 | · 𝑋 , and its true value is 𝑡∗ = |𝐶 | · 𝜇. The sampling

error, which is the error between 𝑡
total

and 𝑡∗ is as follows when
the given confidence level is 1 − 𝛼 :

𝑒 =

���� 𝑡total − 𝑡∗𝑡∗

���� = ���� |𝐶 |𝑋 − |𝐶 |𝜇
|𝐶 |𝜇

���� =
�������
𝜇 ±

𝑧
1− 𝛼

2

𝜎
√
𝑚

− 𝜇

𝜇

������� =
𝑧

1− 𝛼
2

𝜎

𝜇
√
𝑚

. (2)

𝑧
1−𝛼/2

is a standard score when the confidence interval is 1 − 𝛼 ,
and this value becomes 1.96 on 95% confidence level.

Therefore, the sample size 𝑚 ensuring error smaller than the

bound (𝑒 ≤ 𝜖) can be obtained as follows, with a ceiling function

for ensuring the𝑚 is an integer.

𝑚 =

⌈(
𝑧

1−𝛼/2

𝜖

𝜎

𝜇

)
2

⌉
(3)

This equation represents the statistical error model for the sim-

plest scenario where a single set of kernels is considered. A similar

analysis can be found in prior statistical sampling studies [5, 43].

The beauty of STEM lies in its versatility, as it can be applied to

any set of kernels with arbitrary distributions if the 𝜇 and the 𝜎 of

the kernels are known. For example, no matter a kernel exhibits a

narrow or broad execution time histogram, the same STEM equation

(Eq. (3)) can be used to determine the optimal sample size𝑚.

Equation (3) intuitively demonstrates that by leveraging the

mean (𝜇) and standard deviation (𝜎) of kernel execution times,

one can derive an optimal sample size. Specifically, kernels with

wide execution time distributions will have high 𝜎/𝜇 values and this

will hint STEM to determine larger sample sizes. This increased
sample size lets the sampled simulation to capture most of the

diverse runtime behaviors even if the different microarchitecture is

used during the sampled simulation, thereby enhancing both the

accuracy and effectiveness of kernel-level sampling.

4

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO 2025, October 18–22, 2025, Seoul, South Korea

X ~ N(µ, σ²/m)

Sample Size m1, m2, m3
Sample Mean X1, X2, X3

τold = m • X
τnew = m1 • X1 + m2 • X2 + m3 • X3Old Cluster

New Subclusters

...

...

...

...

... ...

Kernel Cluster Infos Optimal Sample Size

Execution Time µ, σ known
confidence interval

minimize m:
error bound ε freq.

exe. time

if τold > τnew: split into subclusters
if τold < τnew: stop splitting

Error modeling of X KKT Solver−

−

−

ROOT
(Sec. 3.3)

STEM
(Sec. 3.2)

STEM STEM
Sample Size m
Sample Mean X − − −

m1, m2, m3, ...
for each cluster

?

−
−

− −

Figure 4: Overview of STEM (top) and ROOT (bottom). STEM estimates simulation error fromkernel execution time distributions
(using the sample mean, 𝑋) and employs a KKT solver to minimize the sample size per cluster while meeting error bounds.
ROOT leverages STEM to determine whether splitting kernel clusters will lead to additional simulation time savings.

We use the value 𝜎/𝜇 obtained from kernel-level profilers [1, 29],

as a proxy for the true value, which is otherwise unobtainable with-

out full simulation. This value, the CoV (coefficient of variation),

represents the relative width of the execution time distribution.

Although the exact values of 𝜎 and 𝜇 may vary across different

simulation settings, the CoV (defined as their ratio) effectively re-

flects a kernel’s inherent runtime behavior, such as whether it is

memory-bound or highly sensitive to hardware changes.

3.3 Optimizing STEM for multiple clusters
In real-world GPU workloads, multiple kernel clusters appear due

to the 1) usage of different kernels and 2) cases where the same ker-

nel often showing multiple peaks in its execution time distribution.

As a result, sampling typically requires selecting representatives

from several clusters at once. We now consider optimizing STEM

for such multi-cluster cases. While one could apply Eq. (3) indepen-

dently to each cluster, this approach imposes strict error bounds

on every cluster, often resulting in a larger total sample size than

necessary. To address this, we introduce an additional optimization

that jointly considers all clusters. This allows STEM+ROOT to re-

duce the required sample size by 2–3× on average, enabling faster

simulations without compromising accuracy.

Let a set of kernel clusters as {𝐶0,𝐶1, ...,𝐶𝑘−1
} and denote 𝑁𝑖 =

|𝐶𝑖 | for convenience. Assume we sample𝑚0,𝑚1, ...,𝑚𝑘−1
number

of kernels from each corresponding cluster. Then, for any 𝑖 in the

range,𝐶𝑖 ’s estimated execution time, 𝑡𝑖 , can be obtained as 𝑡𝑖 = 𝑁𝑖𝑋𝑖
where𝑋𝑖 ∼ N(𝜇𝑖 , 𝜎2

𝑖
/𝑚𝑖) by the CLT. Using the linear combination

rule of normal random variables [35], the estimation for the total

execution time 𝑡 can be expressed as

𝑡 =

𝑘−1∑︁
𝑖=0

𝑡𝑖 =
∑︁
𝑖

𝑁𝑖𝑋𝑖 ∼ N(
∑︁
𝑖

𝑁𝑖𝜇𝑖 ,
∑︁
𝑖

𝑁 2

𝑖

𝜎2

𝑖

𝑚𝑖
) = N(�̃�, �̃�2), (4)

where �̃� ≡ ∑
𝑖 𝑁𝑖𝜇𝑖 and �̃� ≡ ∑

𝑖 𝑁
2

𝑖
𝜎2

𝑖
/𝑚𝑖 are used for brevity.

By using the same error equation as Eq. (2), the error bound

inequality 𝑒 ≤ 𝜖 becomes∑︁
𝑖

𝑁 2

𝑖

𝜎2

𝑖

𝑚𝑖
≤

(
𝜖

𝑧
1−𝛼/2

∑︁
𝑖

𝑁𝑖𝜇𝑖

)
2

. (5)

Since the goal of STEM is to minimize simulation time, we define

𝜏 as the total execution time of the samples, a proxy to the total

simulation time. The optimal 𝜏 that satisfies the error constraint 𝑒 ≤
𝜖 can be obtained by solving the following non-linear minimization

problem using a KKT solver.

Problem 1.

minimize

𝑚𝑖

𝜏 =
∑︁
𝑖

𝑚𝑖𝜇𝑖

subject to

∑︁
𝑖

𝑁 2

𝑖

𝜎2

𝑖

𝑚𝑖
≤

(
𝜖

𝑧
1−𝛼/2

∑︁
𝑖

𝑁𝑖𝜇𝑖

)
2

and 𝑚𝑖 > 0 for ∀𝑖 ∈ {0, ..., 𝑘 − 1}.

Solution. Let 𝑎𝑖 ≡ 𝜇𝑖 , 𝑏𝑖 ≡ 𝑁 2

𝑖
𝜎2

𝑖
, and 𝑐 ≡ (𝜖∑

𝑖 𝑁𝑖𝜇𝑖/𝑧1−𝛼/2
)2

for

brevity. We apply the Karush-Kuhn-Tucker (KKT) conditions to

obtain the following solution:

𝑚𝑖 =


√︁∑

𝑗 𝑎 𝑗𝑏 𝑗

𝑐
·

√︄
𝑏𝑖

𝑎𝑖

 for ∀𝑖 ∈ {0, ..., 𝑘 − 1}, (6)

where the ceiling function ensures integer𝑚𝑖 values, with minor

sub-optimality. The detailed solution is shown in Sec. 8.1. □
Using this KKT Solver, we determine the optimal sample sizes

for a given set of clusters. We define the solution in Equation (6) as

STEM, an extended version of Equation (3) optimized for multiple

kernel clusters.

3.4 ROOT: Fine-grained hierarchical GPU
kernel clustering

ROOT is our novel fine-grained GPU kernel sampling methodology

built upon STEM. Its primary objective is to differentiate distinct ex-

ecution time peaks in invocations of identical kernels as illustrated

in Figure 1 and 2. For instance, consider the sgemm_128x64_nn ker-
nel shown in Figure 1. If one were to directly compute the optimal

sample size using STEM over the entire execution time distribution,

the resulting sample size would be overly large due to the high stan-

dard deviation introduced by multiple distinct peaks. However, by

partitioning the cluster such that each cluster contains only a single

peak, the standard deviation within each cluster is significantly

5

MICRO 2025, October 18–22, 2025, Seoul, South Korea Chung et al.

Kernel Pro�ler

STEM
&

ROOT

Weights for each sampled kernel

*GPU
Sim

Tracerllm.py

GPU
Simu-
lator

llm-kernels.report kernel_sampling_info.txt

�����������������
��������������
�������

sampled_trace
Kernel ID Time (ns) Name GridDim
--
 0 10.5 sgemm (128,128,1)
 1 3.1 maxpool (64, 64, 16)
 2 11.2 sgemm (128,128,1)
 3 3.4 maxpool (64, 64, 16)
 4 10.8 sgemm (128,128,1)
 5 7.5 bn_fw (16, 64, 16)

...

 Sampled Cluster Kernels
kernel IDs size in cluster

 [2, 6] 330 [0, 2, 4, 6, ...]
 [3] 475 [1, 3, 7, 9, ...]
[5, 12, 24] 95 [5, 12, 16, ...]
 [95] 1293 [8, 54, 76, ...]

Kernel traces

kernel2.raw
kernel3.raw
kernel5.raw
kernel6.raw
kernel12.raw... ...

Figure 5: End-to-end pipeline of STEM’s sampled simulation framework. Kernel profiler extracts execution time per kernel
and STEM+ROOT creates sampling information based on it. GPU tracer and simulator use the information to run a sampled
simulation.

...

...

...

...

...
...

...
...

...
......

...

...
...

...

Kernel B

Kernel A

Kernel C

Execution Time

...

ROOT
No more time
savings (τold < τnew)

:

Figure 6: ROOT’s recursive methodology. ROOT hierarchi-
cally splits kernel clusters until further simulation time sav-
ings are no longer possible.

reduced. Consequently, the optimal sample size decreases, leading

to faster sampled simulation while maintaining high accuracy.

A key challenge in this approach is that the number of peaks (or

runtime contexts) is unknown in advance, making it difficult to ap-

ply clustering methods like 𝑘-means as they require the number of

clusters as input. To overcome this, ROOT applies clustering recur-

sively: it continues splitting clusters until further splits no longer

yield meaningful simulation time savings. This hierarchical process

ensures that we isolate kernels with similar execution behavior

while avoiding unnecessary over-partitioning. Figure 6 shows an

example of ROOT performing hierarchical kernel clustering.

The bottom part of Figure 4 illustrates the branching condition

used in ROOT’s recursive algorithm. Given a kernel cluster 𝐶 , we

apply a clustering method (e.g., 𝑘-means) to divide it into subclus-

ters𝐶0,𝐶1, . . . ,𝐶𝑘−1
. ROOT then uses STEM (Eq. 6) to estimate the

simulation time before and after the split and compares the results.

If sampling from the new subclusters 𝐶0, . . . ,𝐶𝑘−1
reduces total

simulation time compared to using the old cluster𝐶 , ROOT accepts

the split. This decision is made by comparing the total simulated

time before and after the split, as shown in Equations (7) and (8).

𝜏𝑜𝑙𝑑 =𝑚𝑋 = ⌈(𝑧
1−𝛼/2

𝜎/𝜇𝜖)2⌉ · 𝑋 (7)

𝜏𝑛𝑒𝑤 =
∑︁
𝑖

𝑚𝑖𝑋𝑖 =
∑︁
𝑖


√︁∑

𝑗 𝑎 𝑗𝑏 𝑗

𝑐
·

√︄
𝑏𝑖

𝑎𝑖

 · 𝑋𝑖 (8)

If 𝜏𝑜𝑙𝑑 > 𝜏𝑛𝑒𝑤 , partitioning the old cluster 𝐶 into new multiple

subclusters {𝐶0, . . . ,𝐶𝑘−1
} will reduce the overall simulation time.

We recursively apply this decision process to achieve fine-grained

kernel clustering with bounded error.

The following is a proof that any union of error-bounded cluster

sets also maintains error-bounded. Applying Theorem 3.1 to each

cluster set ensures that the total sampling error across all clusters

remains bounded by 𝜖 .

Theorem 3.1. Let 𝑆 (0) = {𝐶 (0)
0
,𝐶

(0)
1
, · · · }, 𝑆 (1) = {𝐶 (1)

0
, · · · },

· · · , 𝑆 (𝑁−1) = {𝐶 (𝑁−1)
0

, · · · } be 𝑁 sets of kernel clusters where the
corresponding sampling error of each cluster set is bounded by 𝜖 with
sample sizes {𝑚 (𝑗)

𝑖
} for 𝑆 (𝑗) . Then, the same set of sample sizes gives

a bounded error for the union of every cluster set
⋃𝑁−1

𝑗=0
𝑆 (𝑗) .

Proof. The proof is found in Appendix 8.2. □

3.5 Running the sampled simulation
Once ROOT completes clustering the kernel invocations into sub-

clusters, sampling with sample sizes 𝑚𝑖 determined by STEM is

performed. Random sampling with replacement is used to select the

samples from each subcluster. This also satisfies the i.i.d. conditions

required by the CLT. The sample sizes {𝑚𝑖 } for each subcluster

are computed according to Equations (3) and (6), ensuring that the

sampling process adheres to the desired error bound 𝜖 .

Figure 5 describes the end-to-end pipeline of our kernel-level

sampled simulation framework and illustrates how our STEM+ROOT

method integrates with existing GPU simulators. The process be-

gins with a GPU kernel profiler [1, 29] that collects execution time

information for each kernel invocation. This data is then fed into

the STEM+ROOT algorithm, which selects representative kernel

samples and determines how many kernel invocations each sam-

ple should represent. The generated sampling information is then

passed to a GPU simulator of choice [15, 16] along with the corre-

sponding code or trace of the workload. For trace-based simulators,

traces are generated only for the sampled kernels, significantly re-

ducing trace generation overhead. This can be viewed as embedding

the sampling information into the workload code or trace, allowing

it to be reused across simulators with different configurations. The

simulator uses the sampling information to compute a weighted

sum of the sampled execution times, enabling accurate estimation

of the total simulation time.

6

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO 2025, October 18–22, 2025, Seoul, South Korea

Table 1: Comparison of previous kernel-sampling methods.

Sampling Methods PKA [2] Sieve [24] Photon [21] STEM+ROOT (ours)

Kernel signature 12 instr. level metrics

Kernel name &

Num. of instrs

GPU Basic Block Vector (BBV)

Kernel name &

Exe. time distribution

Clustering 𝑘-means

Hand-tuned,

based on CoV (𝜎/𝜇) Find a kernel with

similar BBV and #warps

(95% threshold)

Fine-grained hierarchical (ROOT)

Kernel sample size

Single per cluster,

first chronological

Single per cluster,

first chronological

Adaptive sampling with statistically

determined sample size (STEM)

Profiling granularity

Instr. count and

statistics per warp
Instr. count per warp Basic block count per warp Execution time per kernel

Scalability for

large-scale workloads

Very low Low Low High

Table 2:Workloads used in evaluation of STEM and baselines.

Benchmark

Suites

Num. of

workloads

Avg. Execution

time (sec)*

Avg. number of

kernel calls

Rodinia (GPGPU) [4] 13 6.46 1403

CASIO (ML) [6] 11 7.26 64279

Huggingface

(LLM/ML) [12]

6 1835.27 11599870

*The execution time of workloads are measured on RTX 2080 GPU.

4 Evaluation
This section presents the evaluation results for STEM+ROOT, in-

cluding its accuracy, performance, error bound sensitivity, valida-

tion on microarchitectural metrics, profiling overhead, and addi-

tional analyses on simulators and various hardware.

4.1 Experiment Setup
Experiment Environment. Our experiments are on a range of

GPUs, including the NVIDIA H100, H200, and RTX 2080. The RTX

2080 was used for profiling experiments, as prior sampling tech-

niques required over a month of exclusive system use, and it was the

only machine available for that duration. We used Nsight Systems

for kernel-level profiling, but our method applies to any GPU sys-

tem that supports similar kernel profilers, such as NVIDIA, AMD,

and Intel GPUs, or TPU/NPUs with similar support [1, 13, 14, 29].

Benchmark Suites. Three benchmark suites were used to eval-

uate our method in terms of speedup, accuracy, and scalability. We

used Rodinia GPU Benchmark Suite 3.1 [4] for small-scale GPGPU

workloads (input config. from the baseline work [24]), CASIO DL

Suite [6] for state-of-the-art ML applications. Although some work-

loads in Rodinia suite has small number of kernel calls, it is pre-

sented as a reference for irregular and diverse GPGPU/HPC work-

loads. For large-scale workloads, we used a set of ML/LLM work-

loads using models from Huggingface repository [12]. The list of

models includes Bert, Bloom, DeiT, Gemma, GPT-2, and ResNet-50,
and the workloads involve generating 1000+ sentences or classify-

ing 7,000+ images. CUDA version 12.6 is used.

Table 2 shows the summary of workloads including the execution

time and number of kernel calls. The three suites will demonstrate

ourmethod’s effectiveness across applications from small-scale (e.g.,

Rodinia, input size 1MB to 1000MB) to large-scale ML models (e.g.,

HuggingFace, model size 25M to 2B parameters). Table 2 highlights

the massive number of kernel calls in the CASIO and Hugging-

Face suites, where STEM+ROOT is expected to fully leverage its

statistical and fine-grained capabilities.

Speedup and error of sampled simulations.Wedefine speedup
as the ratio of the cycle count of the full workload to that of the

sampled workload. Sampling error is computed using the definition

shown in Eq. (1), comparing the full workload’s cycle count and the

estimate obtained from the sampled workload. In cases where run-

ning the full workload on a simulator was infeasible, we used cycle

counts from machine profiles to compute the speedup and sam-

pling error of the sampled simulations. In these experiments, perfect

warmup of the GPU cache and GPU microarchitectural states is

assumed, as the cycle counts are measured on real hardware and

direct manipulation of the hardware was infeasible. See Sec. 5.2

for further discussion of how we acknowledge this limitation and

estimate its potential impact.

Baseline Methods. As summarized in Table 1, we compare

STEM against three kernel sampling baselines: PKA [2], Sieve

[24], and Photon [21]. We used Nsight Compute (NCU) [28] to

gather the instruction-level metrics required for PKA, and NVBit

(NVIDIA Binary Instrumentation Tool) [40] to collect instruction

counts for Sieve. For Photon, we built a BBV profiler based on their

instr_count_bb example to extract GPU BBVs for each kernel,

enabling compatibility with both trace-based simulators [15, 16]

and execution-driven simulators [37].

Instruction-level profiling per warp introduces substantial perfor-

mance overhead, making methods like PKA and Sieve impractical

for large workloads, expected to take months to complete profiling

Huggingface workloads. Moreover, Photon requires kernel process-

ing time that grows quadratically with the number of kernel calls,

making it infeasible for such workloads with over millions of ker-

nels. We analyze and discuss the overhead of previous sampling

methods in more detail in Sec. 4.7. Therefore, we set uniform ran-

dom sampling, in which each kernel is independently selected with

a 0.1% probability, as a baseline for HuggingFace workloads.

Replication & Hyperparameters.We repeated every experi-

ment 10 times and averaged the results to minimize the randomness.

The harmonic mean was used for speedup [8], while the arithmetic

mean was used for sampling error. We set the error bound 𝜖 to 0.05

and used 𝑘 = 2 for k-means clustering used in each iterative step of

ROOT. A z-score of 1.96 was used for 𝑧
1−𝛼/2

(95% confidence level).

Sec. 4.4 discusses the sensitivity of error bound 𝜖 .

4.2 Speedup and Error validation
Table 3 provides a summary of the average speedup and sampling

error achieved by the four sampling methods across the workloads.

Figures 7 and 8 present the speedup and error results for each

7

MICRO 2025, October 18–22, 2025, Seoul, South Korea Chung et al.

ML Workload (Casio Suite)GPGPU Workload (Rodinia Suite)

Figure 7: Speedup comparison of four kernel sampling methods on the Rodinia and CASIO benchmark suites. The speedup is
presented in log-scale, the average speedup is shown on the far right.

ML Workload (Casio Suite)GPGPU Workload (Rodinia Suite)

Figure 8: Sampling error comparison of four sampling methods on Rodinia and CASIO suites. STEM+ROOT shows near-zero
sampling error on CASIO suite as it leverages the massive number of kernel calls and their execution time distributions.

Table 3: Average speedup (×) and error (%) of 5 kernel sam-
pling methods on 3 GPU benchmark suites. Some values not
available due to excessive overhead (details in Sec. 4.7).

Methods

Rodinia

(GPGPU)

CASIO (ML)

Huggingface

(LLM & ML)

Speedup

(×)
Error

(%)

Speedup

(×)
Error

(%)

Speedup

(×)
Error

(%)

Random* 7.09 26.67 984.87 28.39 1004.97 2.40

PKA 8.35 34.85 1425.01 29.26 N/A (Profiling overhead)**

Sieve 2.62 6.63 391.09 23.75 N/A (Profiling overhead)**

Photon 2.84 2.71 168.61 9.85 N/A (BBV process overhead)**

STEM 3.00 0.93 109.595 0.36 31719.057 0.57
*Uniform random; 10% and 0.1% of kernels were sampled for Rodinia and

CASIO respectively.

**Profiling and BBV processing overhead is estimated up to 78.68 days.

benchmark. Scatter plot of CASIO and Huggingface speedup/error

results are shown in Figure 9, where our method is only compared

with random sampling. As a full simulation was intractable for most

workloads, we used profiler’s cycle counts to calculate speedup and

error of sampling methods.

Rodinia Suite. The speedup and error evaluation results are

shown at the first column of Table 3. STEM significantly outper-

forms prior methods in reducing sampled simulation error. While

kernel sampling methods generally yield lower speedups on the

Rodinia suite, STEM achieves the best balance between speedup

and error. STEM achieves speedups comparable to Sieve and Photon

while reducing the error from 2–6% to below 1%.

Results on irregular workloads from the Rodinia suite demon-

strate the robustness of each kernel sampling method. For instance,

in gaussian, the same kernel is invoked repeatedly for Gaussian

elimination, but the number of executed instructions decreases

steadily, approaching zero in later iterations. In heartwall, while
the same kernel runs multiple times, the first invocation is much

shorter; subsequent invocations execute roughly 1500× more in-

structions. Similarly, in pf_float/naive, certain kernels are up

to 100× longer than others. For workloads like heartwall and

pf_naive, PKA and Sieve struggle to distinguish kernels with dras-

tically different execution times. For example, sampling only the

first short kernel in heartwall leads to a severe underestimation

of total execution time, resulting in a massive 99.9% error. Likewise,

in bfs and gaussian, where kernel execution times vary widely,

PKA and Sieve often sample too few kernels, leading to large total

time estimation errors.

For gaussian and heartwall workloads, we manually hand-

tuned PKA and Sieve to randomly sample kernels instead of the

first-chronological kernel, and the error dropped significantly (e.g.,

heartwall: from 99.9% to 37.69% and 5.27% for PKA and Sieve).

Although these improved results are used in our evaluation table

and figures, this tuning must be done per workload, highlighting a

key limitation of these approaches. In contrast, STEM automatically

adapts its sample size based on the runtime variability of profiled

kernels. This leads to substantially lower error with only a modest

increase in simulation cost, achieving a better trade-off between

accuracy and speedup without hand-tuning. We discuss this trade-

off further in Section 4.4.

CASIO Suite: Massive number of kernel calls involved in CA-

SIO suite enabled STEM to fully leverage its statistical modeling

capabilities. PKA and Sieve, which sample only one or a few ker-

nels per cluster, suffer from large sampling errors. Where Photon

reduces error from ∼30% to 9.85% with a slight sacrifice in speedup,

remaining error accounts to the BBVs that are not capable of fully

8

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO 2025, October 18–22, 2025, Seoul, South Korea

Figure 9: Scatter plot showing the speedup (log scale) and
error (%) of different kernel sampling methods on CASIO
suite (left) and Huggingface suite (right).

distinguishing kernels executed in different contexts or with differ-

ent inputs. STEM achieves a significantly lower error of just 0.36%

while maintaining a 109.60× speedup, representing a 27.6–81.89×
reduction in error compared to previous methods. Furthermore,

by tuning the hyperparameter (i.e., the error bound 𝜖), additional

speedup can be achieved. Our sensitivity analysis in Sec. 4.4 shows

that we can reach a speedup of 172.30× with only 0.80% error.

Similar to Rodinia, we tuned Sieve to use random sampling

for the ssdrn34-infer and unet-infer/train workloads, where

first-chronological sampling resulted in large errors. For CASIO

workloads, we disabled Sieve’s additional clustering using KDE

(kernel density estimation), as it led to oversampling and limited

speedups to below 2 − 5× on each workload.

Huggingface Suite: The Huggingface workloads closely align

with how recent GPUs are utilized during ML/LLM serving, exhibit-

ing long execution times of ∼30 minutes (Table 2). STEM+ROOT

significantly outperformed the uniform random sampling, achiev-

ing a 31,719× speedup with an error that is 4.25× smaller. In both

the CASIO and HuggingFace suites, the observed sampling error is

significantly smaller than our theoretical error bound of 5%, indicat-

ing that our statistical modeling and clustering approach is highly

effective for ML workloads with statistically analyzable runtime

behavior, as discussed in our observations (Sec. 2.1).

4.3 Limitations of current sampling methods
While the diverse and unpredictable runtime behaviors of GPU

kernels pose a significant challenge for accurate kernel sampling

(as discussed in Section 2.1), prior methods that rely on instruction-

level or control-flow-based features often fail to distinguish kernels

with substantially different execution characteristics. Conventional

kernel signatures are limited in their ability to capture the wide

and sparse execution time distributions commonly observed in

GPU workloads, as they overlook dynamic runtime context and

the kernel’s sensitivity to the underlying hardware such as mem-

ory hierarchy. In contrast, ROOT differentiates kernels that share

the same code but differ in runtime behavior using fine-grained

clustering. STEM then adaptively assigns sample sizes based on

variability within each cluster, allocating more samples to unstable

kernel clusters and improving sampled simulation accuracy.

Figure 10 illustrates this limitation of current kernel signatures:

each histogram shows a group of kernels that are considered "iden-

tical" according to previous methods. For example, in cluster 0 of

5 10
0

20

40

60
Cluster 0 of PKA

6 8
0

10

20

30

40
Cluster 0 of Sieve

2.00 2.25 2.50 2.75
0

200

400

600

Cluster 0 of Photon

2 4
0

500

1000
Cluster1 of PKA

0 5 10
0

20

40

Cluster 1 of Sieve

1.3 1.4 1.5
0

10

20

30

40
Cluster 1 of Photon

Kernel Execution Time (us)

Ke

rn
el

 C
al

ls

Figure 10: Distribution of execution times for kernels
grouped as “identical” by previous sampling techniques, us-
ing the DLRM workload from the CASIO benchmark suite.

�����
������
������

������

����
����
����

����

Figure 11: Impact of varying the error bound (𝜖) on speedup
and sampling error for STEM. Larger 𝜖 values enhance
speedup with increased error.

PKA, all kernels with execution times ranging from 2 𝜇s to 11 𝜇s

are treated as identical kernels by PKA’s kernel selection algorithm.

PKA selects one sample from this group and assumes the rest be-

have identically, leading to significant errors in sampled simulation.

Photon performs slightly better in distinguishing kernels, but all

kernels shown in the histogram still share a single common proxy

for sampled simulation, potentially missing to catch the runtime

diversity.

4.4 Tradeoff between the sample size and error
As increasing the number of sampled kernels reduces simulation

error but also diminishes speedup, the core challenge is to identify

a sweet spot that minimizes error while maintaining high speedup.

As PKA and Sieve assume sampling only one or a few kernels per

cluster is sufficient, this lead to high sampling error as shown in

Table 3, despite its aggressive speedup. Photon improves upon this

by comparing GPU BBVs for each kernel, but it still relies on a fixed

threshold of 95% and does not adjust sample sizes based on kernel

behaviors. In contrast, STEM adaptively determines sample sizes

based on the runtime fluctuation of kernels: for kernels exhibiting

wide or multi-modal histograms, it selects multiple samples to

accurately capture their heterogeneous behavior. This fine-grained

approach enables STEM to achieve near-zero sampling error, while

still preserving much of the simulation speedup.

9

MICRO 2025, October 18–22, 2025, Seoul, South Korea Chung et al.

Table 4: Average error (%) of sampled simulation on 11 Ro-
dinia and 6 LLM workloads across various GPU microarchi-
tectures using various kernel sampling methods.

𝜇arch Changes

*PKA

error (%)

*Sieve

error (%)

Photon

error (%)

STEM (ours)
error (%)

Baseline 20.06 24.40 5.96 2.03
Cache size ×2 22.66 25.67 5.44 1.93
Cache size × 1

2
16.65 22.61 5.33 1.96

#SM ×2 17.90 28.18 6.49 2.28
#SM × 1

2
23.68 23.08 5.14 2.30

*We observe high error on Rodinia workloads, as smaller configurations are

used to run full cycle-level simulation for error measurement.

This behavior is shown in Figure 9, a scatter plot with speedup

on the 𝑥-axis and sampling error on the 𝑦-axis. Black × markers

indicate the mean performance of each method. Our method con-

sistently achieves near-zero error with only modest speedup loss,

effectively capturing the sweet spot in the speedup–error tradeoff.

Sensitivity Analysis on the Error Bound. We evaluated how

varying the error bound 𝜖 impacts the tradeoff between simulation

speedup and sampling error using the CASIO benchmark suite. We

tested 𝜖 values of 3%, 5%, 10%, and 25%, with a fixed 95% confidence

level. As shown in Figure 11, smaller 𝜖 values reduce sampling error

but lower speedup due to more samples, while larger values yield

higher speedup at the cost of accuracy. For instance, at 𝜖 = 3%,

STEM achieved a 0.18% mean error with 76.46× speedup, whereas

𝜖 = 25% gave 228.53× speedup with 2.00% error. These results

show that STEM enables flexible tuning to balance accuracy and

efficiency.

4.5 Validating STEM on various GPU
microarchitectures

We evaluate STEM’s robustness using a design space exploration

(DSE) experiment on the cycle-accurate simulator MacSim [16]. The

results suggest that the sampling error on new hardware remains

comparable to the error on the baseline machine, even if the same

sampling information extracted from execution time profile is used.

We modified key microarchitectural parameters, including L1/L2

cache sizes and the number of streaming multiprocessors (SMs), to

model GPUs with varying hardware configurations. We selected

11 Rodinia and 6 ML workloads from the HuggingFace suite and

reduced their sizes to run full simulation within a few days on

MacSim.

Table 4 reports the average error of each method across different

hardware variants. The scale of error compared to Table 3 increased

due to the smaller input configurations and less number of kernel

calls for the Rodinia workloads. STEM consistently maintains sig-

nificantly lower error than baseline methods on each hardware

change. Although such hardware differences cause slight variations

in error, STEM’s low error across variants highlights the robustness

of its execution time–based sampling strategy, supported by its

statistically rigorous design. We sampled six different LLM and

Rodinia workloads and compared the estimated cycle counts of

each method against ground truth, as shown in Figure 12. PKA and

Sieve often under- or overestimate total cycle counts depending on

the workload, while STEM consistently produce accurate estimates,

even under significant microarchitectural changes.

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0

200

Cy
cle

s (
x

10
6) bloom

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0

100

Cy
cle

s (
x

10
6) gpt2

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0
2500
5000

Cy
cle

s (
x

10
3) bfs

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0
2500
5000

Cy
cle

s (
x

10
3) gaussian

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0
1000
2000

Cy
cle

s (
x

10
3) pf_naive

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0
250
500

Cy
cle

s (
x

10
3) srad_v1

PKA Sieve Photon STEM Real

Figure 12: Cycle count comparison between sampled and
full simulation across GPU microarchitecture changes using
various kernel sampling methods and workloads.

bert-in
fer

bert-tra
in

dlrm-infer
dlrm-train

resnet-infer

resnet-tra
in

rnnt-tra
in

ssdrn34-infer

ssdrn34-train
unet-infer

unet-tra
inmean

0

5

10

Er
ro

r (
%

)

Figure 13: Sampling kernels with STEM onH200 using kernel
profiles from H100 results in low sampling error.

Second, we evaluate cross-GPU portability by using sampling

information obtained from the NVIDIA H100 and measuring the

sampling error on the newer H200 GPU, which features increased

global memory capacity and bandwidth. As shown in Figure 13,

sampling decisions made on the H100 result in an average error

of 5.46% when applied to the H200. The dlrm workload, known

for its memory-intensive behavior and random access patterns due

to large embedding tables, exhibits the highest error due to the

hardware’s significant memory subsystem upgrades.

Across both experiments, despite hardware-induced changes in

absolute kernel execution time, the underlying kernel behaviors and

their microarchitectural characteristics captured by STEM using

the execution time distributions remain effective for identifying

representative kernels–yielding sampling errors on various GPU

microarchitectures.

4.6 Validation on microarchitectural metrics
We conducted a detailed microarchitectural behavior comparison to

evaluate how well the sampled workload represents the full work-

load beyond total execution time. 13 metrics from four microarchi-

tectural categories were collected: 1○ shared/global memory access

patterns, 2○ L1/L2 cache accesses, 3○ 16/32-bit floating-point op-

eration counts, and 4○ warp execution/branch efficiencies. These

provide a comprehensive view of the workload’s interaction with

key GPU subsystems, offering insights into memory hierarchy uti-

lization, computational precision, and execution control efficiency.

10

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO 2025, October 18–22, 2025, Seoul, South Korea

DRAM read DRAM write
0
2
4
6
8

Av
g.

 d
at

a
pe

r K
er

ne
l (

M
B)

4.71

1.82

4.71

1.82

DRAM read/write access
Sampled Full

Shared LD Shared ST
0

20

40

60

80

Av
g.

 #
in

st
rs

pe
r K

er
ne

l

6.22

39.60

6.22

39.60

Shared LD/ST
Sampled Full

Global LD Global ST
0

20

40

60

80

Av
g.

 #
in

st
pe

r K
er

ne
l

41.74

19.71

41.74

19.71

Global LD/ST
Sampled Full

L1 hit rate L2 Read hit rate
0

20

40

60

80

Ca
ch

e
Hi

t r
at

e
(%

)
11.59

36.50

11.60

36.56

L1/L2 Cache hit rate
Sampled Full

FP16 FP32 INT32
0

10

20

30

Av
g.

 #
in

st
rs

pe
r K

er
ne

l

12.89
10.64 12.5312.89

10.64 12.53

FP16/FP32/INT32 instrs
Sampled Full

Warp execution
efficiency

Branch
efficiency

0

50

100

150

200

Ef
fic

ie
nc

y
Ra

te
 (%

)

31.82

99.69

31.82

99.69

Warp/Branch efficiency
Sampled Full

Figure 14: Comparison of microarchitectural metrics be-
tween the full workload and the sampled workload.
bert_infer workload of CASIO benchmark suite was used.

Predictions for these metrics were computed using a weighted sum

over the sampled kernels, following the same approach used to

estimate total execution time in Section 3.1. Figure 14 shows near-

zero differences between the sampled and full simulations across

all metrics for the bert_infer workload in the CASIO suite. Simi-

lar trends were observed across all other CASIO workloads. The

same error bound of 𝜖 = 5% was used, which empirically achieved

near-zero error in microarchitectural metrics without significant

compromise in speedup.

These results suggest that STEM accurately captures diverse

microarchitectural behaviors, despite relying primarily on execu-

tion time for sampling. This ensures that the sampled simulation

reflects the runtime characteristics of the full workload–a critical

requirement for GPUs, where performance is shaped by the inter-

play of parallelism, memory hierarchy, and control flow. For this

evaluation, we assumed an optimally warmed-up cache and focused

on L2 read hit rate, as GPU cache policies guarantee 100% L2 hit

rate for writes.

4.7 Scalability of STEM on large workloads
STEM+ROOT is significantly more scalable than prior methods,

as it relies solely on kernel-level execution time data and employs

an efficient hierarchical clustering algorithm. In contrast, methods

such as PKA and Sieve depend on instruction- or basic-block-level

statistics collected per warp, incurring substantial overhead due

to frequent atomic operations and heavy reliance on limited GPU

hardware counters. These methods often require multiple kernel

replays and experience slowdowns from contention, making them

impractical for large-scale workloads. While Photon collects BBVs

more efficiently than instruction counts, it still suffers from high

time and space overhead when comparing BBVs for every kernel. Its

comparison cost grows quadratically with the number of kernels, be-

coming infeasible for workloads with millions of kernel invocations.

Photon’s time complexity ranges from O(𝑁𝑆𝑑) to O(𝑁 2𝑑), where
𝑁 is the number of kernels, 𝑆 is the number of samples, and 𝑑 is the

Table 5: Comparison of profiling overheads across bench-
mark suites relative to original uninstrumented wall time.
Some values were not measured due to excessive overhead.

Sampling

methods

Profiler used,

metrics collected

Rodinia

(GPGPU)

CASIO

(ML)

Huggingface

(LLM & ML)

PKA [2]

(baseline)

NCU, collecting

12 metrics

35.57× 3704.23× N/A

Sieve [24]

(baseline)

NVBit, collecting

num. of instrs

94.14× 293.58× N/A

Photon [21]

(baseline)

NVBit, collecting

& processing BBVs

12.81× 38.58× N/A

STEM

(ours)

NSYS, collecting

kernel exe. time

1.54× 5.53× 1.33×

BBV dimensionality. As a result, Photon cannot scale effectively to

workloads with millions of kernel calls. In contrast, STEM+ROOT

achieves a lower complexity of O(𝑁 log𝐾) to O(𝑁 log𝑁) in the

worst case, where 𝐾 is the number of subclusters.

Table 5 illustrates the trend that profiling overhead increases

significantly with larger workloads. We measured the profiling

overheads of our method and prior approaches using the profilers

noted in our experiment setup. PKA and Sieve introduce overheads

of 200×–3000× on the CASIO suite, rendering them impractical for

large workloads such as those from HuggingFace. While Photon

incurs less overhead for BBV collection, its high-dimensional BBV

comparison algorithm introduces quadratic time complexity, mak-

ing it infeasible for workloads like GPT-2, which contains over 50

million kernel invocations with 800+ BBV dimensions per kernel

before the dimension reduction with PCA. STEM reduces profil-

ing overhead by 53.07× to 669.60× on CASIO, making it practical

for modern ML workloads. Unlike prior methods, whose overhead

grows with kernel count, STEM’s profiling remains lightweight

and scales well due to fixed post-processing cost. For HuggingFace

models, prior methods would require up to 78.68 days of profiling

and processing per workload, assuming the same overhead ratio.

5 Discussion
5.1 Potential limitations of using execution

time in kernel sampling
Leveraging kernel execution time for workload sampling provides

three key advantages: accuracy through fine-grained sampling,

statistical feasibility supported by a rigorous error model, and scal-

ability due to minimal profiling overhead. While these advantages

are highly effective, some potential concerns rise on our approach.

A potential concern of STEM is that it depends on hardware-

dependent data for sampling. When profiling and sampling are

performed on hardware A but the simulation is run on hardware B,

the sampled kernels from hardware A may fail to capture the work-

load’s runtime behavior on hardware B. For instance, a kernel that

exhibits a consistent execution time on hardware A might display

heterogeneous runtime behavior on a new GPU microarchitecture.

In such cases, the original samples may not fully represent the run-

time variability on the target hardware, potentially compromising

the accuracy of sampled simulation. While STEM is not entirely

immune to this issue, we claim that STEM’s fine-grained kernel

analysis and adaptive sampling strategy are designed to minimize

such hardware-dependent errors. The core of this resilience lies in

11

MICRO 2025, October 18–22, 2025, Seoul, South Korea Chung et al.

STEM’s adaptive sampling, which naturally allocates more samples

to kernels that are sensitive to microarchitectural changes. Typ-

ically, kernels with highly varying runtime at every invocation,

which are often those whose performance relies heavily on the

memory system, are most susceptible to hardware changes. Be-

cause STEM samples these variable kernels more frequently on

the source hardware, it preemptively captures a diverse range of

behaviors. This inherent oversampling of sensitive kernels ensures

that the approach remains robust, even when microarchitectural

changes on the target hardware affect their performance. Therefore,

STEM often shows much higher accuracy compared to previous

works that use hardware-independent parameters, as they only

take one or very less samples from each kernel or cluster. This

minimizes hardware-dependent inaccuracies in applications like

hardware design space exploration (DSE).

To illustrate this principle, consider two kernels: Kernel-A, which

is memory-bound and exhibits high runtime variability, and Kernel-

B, which is compute-bound and shows stable performance. Based

on its analysis, STEM would select many representative samples

from Kernel-A but only a few from Kernel-B. Now, consider a

microarchitectural change on the target hardware–such as a new

cache replacement policy, pagemanagement, or prefetcher behavior.

This change would likely impact the performance of the memory-

sensitive Kernel-A but have a minimal effect on Kernel-B. Even

if the change alters the execution of Kernel-A, the impact on the

overall estimated performance remains low due to the large number

of samples already chosen from it. Therefore, such deviations are

unlikely to significantly affect the accuracy of the simulation results.

STEM’s robustness is supported by our empirical observations.

As shown in Figure 14, kernels within the same cluster tend to

maintain similar microarchitectural behavior, even though they

were clustered solely based on execution times. This suggests that

while a sampled simulation cannot be identical to a full simulation,

the selected samples are likely to preserve their core microarchitec-

tural characteristics despite hardware changes. Furthermore, our

experiments confirm this resilience. In both DSE and hardware-

switching scenarios (Figure 12, 13), our methodology proves reliable

and demonstrates superior accuracy compared to previous sampling

methods.

5.2 Limitations and Future works
Multi-GPU workloads. Extending to multi-GPU workloads is a

promising direction for future work. Supporting multi-device envi-

ronments with STEM requires careful handling of both synchronous

and asynchronous communication kernels, as well as considera-

tion of data/control dependencies, computation–communication

overlap, and inter-device synchronization. Future extension of our

work could involve using Chakra ET (execution trace), which is a

standard method of representing multi-device ML workloads with

a DAG (directed acyclic graph) of operations and dependencies [36].

Node and edge sampling on such DAG-style ETs would serve as

a decent starting point to analyze data and control dependencies

between computation and communication kernels with implicit

synchronizations between devices. This would be a foundational

step toward fast and accurate sampling for large-scale, multi-GPU

simulators [19, 42].

Warm-up of hardware states in sampled GPU simulations.
STEM+ROOT’s selection algorithm for representative kernels as-

sumes ideal warmup of cache and hardware states. However, certain

microarchitectural components, such as the L2 cache, may retain

state across kernel boundaries in real hardware, potentially leading

to discrepancies in cache reuse during sampled simulation. Efficient

and accurate warmup of architectural and microarchitectural states

in sampled GPU simulations remains an open research problem

that has yet to be fully addressed in the GPU domain.

Despite this limitation, we observe that in most workloads eval-

uated in this paper, kernel-level simulation time is sufficiently long

to mitigate the impact of imperfect cache warmup. For instance,

assuming an L2 cache size of 10–50 MB, a few million warp-level

memory instructions are typically enough to saturate the GPU

caches; a negligible fraction (less than 0.1%) of total instructions

in the majority of our benchmarks. To quantify the potential ef-

fect of inter-kernel cache reuse, we performed an extreme-case

experiment by flushing the L2 cache between every kernel. The

results show minimal accuracy degradation: for the STEM method,

error increased by only 0.70% on Rodinia and 0.07% on CASIO. For

comparison, PKA exhibited 0.92%, Sieve 4.08%, and Photon 0.61%

error on Rodinia. This limited impact can be attributed to the large

memory footprints of the kernels and as most cache reuse occurs

within kernels rather than across them.

Exploring alternative sampling granularity, such as grouping

multiple consecutive kernels as the minimum unit, could help cap-

ture inter-kernel cache effects. However, this would likely introduce

substantial overhead, significantly impacting the speedup benefits

of sampling. Another potential solution, hardware state check-

pointing, explored in CPU simulation [39], may provide accuracy

but remains impractical on modern GPUs due to the significant

performance and storage costs of saving large L2/L3 states (e.g.,

B100, MI300X) and register files. Nonetheless, lightweight warmup

strategies, such as inserting warmup instructions or short warmup

kernels, may offer practical benefits with minimal simulator modi-

fications.

6 Related works
6.1 Workload sampling for CPUs
SimPoint [9] uses Basic Block Vectors (BBVs) to identify repre-

sentative regions in CPU workloads. It segments execution into

slices and applies K-means clustering on BBVs, enabling sampled re-

gions to reflect full workload behavior across different architectures.

SMARTS [43] and SimFlex [41] build on SimPoint by incorporating

statistical techniques such as matched-pair comparison to reduce

simulation points. Extensions like those by Perelman et al. [31],

BarrierPoint, and LoopPoint [3, 33] adapted SimPoint for multi-

threaded workloads. Due to GPUs’ high thread-level parallelism

(TLP) and distinct execution characteristics, new sampling tech-

niques have been developed specifically for GPUworkloads, though

they share the same core goal of representative workload sampling.

6.2 Kernel-level workload sampling for GPUs
TBPoint [10] uses microarchitecture-independent metrics obtained

from profiling to apply hierarchical clustering, grouping similar

kernels together and then sampling the kernel closest to the center

12

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO 2025, October 18–22, 2025, Seoul, South Korea

of each group. PKA [2] extends this idea by performing k-means

clustering on feature vectors from hardware-profiled data, sweeping

through 𝑘=1 to 20 to find the optimal 𝑘 and then sampling the first-

chronological kernel from each clusters. Sieve [24], on the other

hand, only uses the number of instructions as the feature vector to

reduce profiling overhead. It stratifies the kernels into three groups

based on the degree of instruction count variation across different

invocations of the same kernel code. Sieve then samples the first-

chronological one for each kernel with the most dominant CTA size.

Photon [21] employs online analysis to dynamically determine at

runtime whether a basic block (BB), warp, or kernel has stabilized,

enabling it to skip ahead to the next simulation phase. It collects

and compares GPU BBVs across all kernel invocations to enable

accurate kernel-level sampling.

6.3 Other sampling methods in GPU workloads
Intra-kernel sampling is a technique for finding simulation points

within a single kernel. GPGPU-MiniBench [44] performs intra-

thread-block analysis, while TBPoint and PKA incorporate intra-

kernel sampling to gain further speedup beyond kernel-level meth-

ods. These techniques detect stable runtime behavior and, once

observed, skip remaining simulation phases. Photon also uses on-

line analysis to assess the stability of basic blocks (BBs) and warps

for effective intra-kernel sampling. Since kernel-level sampling

is orthogonal to warp- or BB-level sampling [2, 21], our method

can be combined with cases of few kernel calls or long-running

kernels. SeyyedAghaei et al. [34] accelerate GPU simulation using

small-scale models, but their approach is limited to workloads that

scale linearly with the number of streaming multiprocessors (SMs),

covering only a narrow class of GPU applications.

7 Conclusion
This paper introduces STEM+ROOT, an accurate, scalable, and

statistically robust kernel-level sampling solution for large-scale

GPU workloads. STEM and ROOT leverage key observations on

the heterogeneous runtime characteristics of modern GPU kernels,

particularly how their execution time distributions provide valu-

able insights for accurate sampling. STEM+ROOT offers a fast and

reliable kernel sampling solution with high speedup and minimal

error. Our evaluation demonstrates that STEM+ROOT significantly

reduces sampling error on cycle-level simulations with design space

exploration (DSE) experiments. Moreover, STEM exhibits excellent

scalability across modern large-scale GPU applications.

8 Appendix
8.1 Solution for Problem 1.
Let 𝑎𝑖 ≡ 𝜇𝑖 , 𝑏𝑖 ≡ 𝑁 2

𝑖
𝜎2

𝑖
, and 𝑐 ≡ (𝜖∑

𝑖 𝑁𝑖𝜇𝑖/𝑧1−𝛼/2
)2

for simplicity.

Then, the Problem 1 becomes as below:

minimize

𝑚𝑖

∑︁
𝑖

𝑎𝑖𝑚𝑖

subject to

∑︁
𝑖

𝑏𝑖

𝑚𝑖
− 𝑐 ≤ 0

and 𝑚𝑖 > 0 for ∀𝑖 ∈ {0...𝑘 − 1}.

The corresponding Lagrangian function L can be written as

follows:

L(m, 𝜆) =
∑︁
𝑖

𝑚𝑖𝑎𝑖 + 𝜆𝑘 · (
∑︁
𝑖

𝑏𝑖

𝑚𝑖
− 𝑐) +

∑︁
𝑖

𝜆𝑖 · (−𝑚𝑖) .

The solutionm∗
must satisfy the following four Karush–Kuhn–Tucker

(KKT) conditions:

• Stationary Condition: ∇L(m∗
; 𝜆) = 0 (a)

• Primal Feasibility:

∑
𝑖 𝑏𝑖/𝑚∗

𝑖
− 𝑐 ≤ 0 (b)

and (−𝑚∗
𝑖
) ≤ 0 for ∀𝑖 ∈ {0...𝑘 − 1} (c)

• Dual Feasibility: 𝜆𝑖 ≥ 0 for ∀𝑖 ∈ {0...𝑘} (d)

• Complementary Slackness: 𝜆𝑘 · (∑𝑖 𝑏𝑖/𝑚∗
𝑖
− 𝑐) + ∑

𝑖 𝜆𝑖 ·
(−𝑚∗

𝑖
) = 0 (e)

From (b), (c), and (d), we can see that in each term either one of

𝜆𝑖 or the multiplied term should be zero. Since we are assuming

𝑚𝑖 > 0, 𝜆𝑖 = 0 for ∀𝑖 ∈ {0...𝑘 − 1}.
Also, from (a), 𝑎𝑖 − 𝜆𝑘𝑏𝑖/(𝑚∗

𝑖
)2 − 𝜆𝑖𝑚∗

𝑖
= 0.

Since 𝑎𝑖 ≠ 0, 𝜆𝑘 ≠ 0 and thus the equality of (b) holds and thus

𝑚∗
𝑖
=

√︁
𝜆𝑘𝑏𝑖/𝑎𝑖 for ∀𝑖 ∈ {0...𝑘 − 1}.

By putting this into (b), we obtain

∑
𝑖

√︁
𝑎𝑖𝑏𝑖/𝜆𝑘 = 𝑐 and thus

𝜆𝑘 = (∑𝑖

√
𝑎𝑖𝑏𝑖/𝑐)2

. Therefore, the solution to the non-linear opti-

mization problem is:

𝑚𝑖 =

√︁∑
𝑗 𝑎 𝑗𝑏 𝑗

𝑐
·

√︄
𝑏𝑖

𝑎𝑖
for ∀𝑖 ∈ {0...𝑘 − 1}.

8.2 Proof of Theorem 3.1
Proof. By the definition of sampling errors,∑︁

𝑖

(𝑁 (𝑗)
𝑖

)2
(𝜎 (𝑗)

𝑖
)2

𝑚
(𝑗)
𝑖

≤
(

𝜖

𝑧
1−𝛼/2

∑︁
𝑖

𝑁
(𝑗)
𝑖

𝜇
(𝑗)
𝑖

)
2

(9)

satisfies for arbitrary ∀𝑗 ∈ {0, ..., 𝑁 − 1}.
Since

𝜖
𝑧

1−𝛼/2

∑
𝑖 𝑁

(𝑗)
𝑖

𝜇
(𝑗)
𝑖

is positive for every 𝑗 , we apply the

following inequality:

∑
𝑗 𝑥

2

𝑗
≤ (∑𝑗 𝑥 𝑗)2

when 𝑥 𝑗 ≥ 0 for ∀𝑗 .
We then sum (9) by 𝑗 to get∑︁

𝑖 𝑗

(𝑁 (𝑗)
𝑖

)2
(𝜎 (𝑗)

𝑖
)2

𝑚
(𝑗)
𝑖

≤
(

𝜖

𝑧
1−𝛼/2

)
2 ∑︁

𝑗

(∑︁
𝑖

𝑁
(𝑗)
𝑖

𝜇
(𝑗)
𝑖

)
2

(10)

≤
(

𝜖

𝑧
1−𝛼/2

)
2 ©­«

∑︁
𝑖 𝑗

𝑁
(𝑗)
𝑖

𝜇
(𝑗)
𝑖

ª®¬
2

. (11)

The sum

∑
𝑖 𝑗 in (11) is the same as summing through every cluster

in the union set

⋃𝑁−1

𝑗=0
{𝐶 (𝑗)

𝑖 𝑗
}. By substituting

�̃� =
∑︁
𝑖 𝑗

𝑁
(𝑗)
𝑖

𝜇
(𝑗)
𝑖

and �̃�2 =
∑︁
𝑖 𝑗

(𝑁 (𝑗)
𝑖

)2
(𝜎 (𝑗)

𝑖
)2

𝑚
(𝑗)
𝑖

,

we transform (11) into the following inequality���� (�̃� + 𝑧1−𝛼/2
�̃�) − �̃�

�̃�

���� ≤ 𝜖, (12)

which implies that the union of cluster sets also gives bounded

sampling error under a 1 − 𝛼 confidence interval.

□
13

MICRO 2025, October 18–22, 2025, Seoul, South Korea Chung et al.

References
[1] AMD. 2025. ROCProfiler documentation. https://rocm.docs.amd.com/projects/

rocprofiler/en/latest/.

[2] Cesar Avalos Baddouh, Mahmoud Khairy, Roland N. Green, Mathias Payer, and

Timothy G. Rogers. 2021. Principal Kernel Analysis: A Tractable Methodol-

ogy to Simulate Scaled GPU Workloads. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (Virtual Event, Greece) (MICRO
’21). Association for Computing Machinery, New York, NY, USA, 724–737.

https://doi.org/10.1145/3466752.3480100

[3] Trevor E. Carlson, Wim Heirman, Kenzo Van Craeynest, and Lieven Eeckhout.

2014. BarrierPoint: Sampled simulation of multi-threaded applications. In 2014
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). 2–12. https://doi.org/10.1109/ISPASS.2014.6844456

[4] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-

Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous

computing. IEEE, Piscataway, NJ, USA, 44–54.

[5] Euijun Chung, Seonjin Na, and Hyesoon Kim. 2024. Allegro: GPU Simulation

Acceleration for Machine Learning Workloads. InMachine Learning for Computer
Architecture and Systems 2024.

[6] Michael Davies, Ian McDougall, Selvaraj Anandaraj, Deep Machchhar, Rithik

Jain, and Karthikeyan Sankaralingam. 2024. A Journey of a 1,000 Kernels Begins

with a Single Step: A Retrospective of Deep Learning on GPUs. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (La Jolla, CA, USA) (ASPLOS ’24).
Association for Computing Machinery, New York, NY, USA, 20–36. https://doi.

org/10.1145/3620665.3640367

[7] Lieven Eeckhout. 2022. Computer Architecture Performance Evaluation Methods
(1st ed.). Springer Cham.

[8] Lieven Eeckhout. 2024. RIP Geomean Speedup Use Equal-Work (Or Equal-Time)

Harmonic Mean Speedup Instead. IEEE Computer Architecture Letters (2024).
[9] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. SimPoint 3.0:

Faster and More Flexible Program Phase Analysis. J. Instr. Level Parallelism 7

(2005). https://api.semanticscholar.org/CorpusID:11937761

[10] Jen-Cheng Huang, Lifeng Nai, Hyesoon Kim, and Hsien-Hsin S. Lee. 2014.

TBPoint: Reducing Simulation Time for Large-Scale GPGPU Kernels. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium. 437–446.

https://doi.org/10.1109/IPDPS.2014.53

[11] Rodrigo Huerta, Mojtaba Abaie Shoushtary, José-Lorenzo Cruz, and Anto-

nio González. 2025. Analyzing Modern NVIDIA GPU cores. arXiv preprint
arXiv:2503.20481 (2025).

[12] Huggingface. 2025. Huggingface. Retrieved Jan 17, 2025 from https://huggingface.

co

[13] Intel. 2025. Profiling with Intel Gaudi Software. https://docs.habana.ai/en/latest/

Profiling/Intel_Gaudi_Profiling/.

[14] JAX. 2025. JAX Profiling computation. https://docs.jax.dev/en/latest/profiling.

html.

[15] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020.

Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling. In

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). 473–486. https://doi.org/10.1109/ISCA45697.2020.00047

[16] Hyesoon Kim, Jaekyu Lee, Nagesh B Lakshminarayana, Jaewoong Sim, Jieun

Lim, and Tri Pho. 2023. Macsim: A CPU-GPU heterogeneous simulation framework
user guide.

[17] David M. Lane. 2025. OnlineStatBook: Sampling Distribution of the Mean. Re-

trieved Jan 17, 2025 from https://onlinestatbook.com/2/sampling_distributions/

samp_dist_mean.html

[18] Jaewon Lee, Euijun Chung, Saurabh Singh, Seonjin Na, Yonghae Kim, Jaekyu Lee,

and Hyesoon Kim. 2025. Let-Me-In:(Still) Employing In-pointer Bounds Metadata

for Fine-grained GPU Memory Safety. In 2025 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 1648–1661.

[19] Ying Li, Yuhui Bao, Gongyu Wang, Xinxin Mei, Pranav Vaid, Anandaroop Ghosh,

Adwait Jog, Darius Bunandar, Ajay Joshi, and Yifan Sun. 2025. TrioSim: A

Lightweight Simulator for Large-Scale DNN Workloads on Multi-GPU Systems.

(2025).

[20] David J. Lilja. 2000. Measuring Computer Performance: A Practitioner’s Guide.
Cambridge University Press.

[21] Changxi Liu, Yifan Sun, and Trevor E. Carlson. 2023. Photon: A Fine-grained

Sampled Simulation Methodology for GPU Workloads. In Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture (Toronto, ON,
Canada) (MICRO ’23). Association for Computing Machinery, New York, NY,

USA, 1227–1241. https://doi.org/10.1145/3613424.3623773

[22] Xueyang Liu, Seonjin Na, Euijun Chung, Jiashen Cao, Jing Yang, and Hyesoon

Kim. 2025. Contention-Aware GPU Thread Block Scheduler for Efficient GPU-

SSD. IEEE Computer Architecture Letters (2025).
[23] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S

Vetter. 2018. Nvidia tensor core programmability, performance & precision. In

2018 IEEE international parallel and distributed processing symposium workshops

(IPDPSW). IEEE, 522–531.
[24] Mahmood Naderan-Tahan, Hossein SeyyedAghaei, and Lieven Eeckhout. 2023.

Sieve: Stratified GPU-Compute Workload Sampling. In 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 224–234.
https://doi.org/10.1109/ISPASS57527.2023.00030

[25] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar,

Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. 2024. A

Comprehensive Overview of Large Language Models. arXiv:2307.06435 [cs.CL]

[26] NVIDIA. 2025. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html#warp-shuffle-functions.

[27] NVIDIA. 2025. CUDNN Documentation. Retrieved Jan 17, 2025 from https:

//docs.nvidia.com/deeplearning/cudnn/latest/api/overview.html

[28] NVIDIA. 2025. NVIDIA Nsight Compute. Retrieved Jan 17, 2025 from https:

//developer.nvidia.com/nsight-compute

[29] NVIDIA. 2025. NVIDIA Nsight Systems. Retrieved Jan 17, 2025 from https:

//developer.nvidia.com/nsight-systems

[30] Adam Paszke, SamGross, and FranciscoMassa et al. 2019. PyTorch: An Imperative

Style, High-Performance Deep Learning Library. arXiv:1912.01703 [cs.LG]

[31] Erez Perelman, Marzia Polito, J-Y Bouguet, Jack Sampson, Brad Calder, and Carole

Dulong. 2006. Detecting phases in parallel applications on shared memory archi-

tectures. In Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium. IEEE, 10–pp.

[32] Huanzhi Pu, Rishabh Ravi, Shinnung Jeong, Udit Subramanya, Euijun Chung,

Jisheng Zhao, Chihyo Ahn, and Hyesoon Kim. 2025. Hardware vs. Software

Implementation of Warp-Level Features in Vortex RISC-V GPU. arXiv preprint
arXiv:2505.03102 (2025).

[33] Alen Sabu, Harish Patil, Wim Heirman, and Trevor E Carlson. 2022. Loop-

Point: Checkpoint-driven sampled simulation for multi-threaded applications. In

2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 604–618.

[34] Hossein SeyyedAghaei, Mahmood Naderan-Tahan, and Lieven Eeckhout. 2024.

GPU Scale-Model Simulation. In 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 1125–1140.

[35] Joram Soch. 2021. The Book of Statistical Proofs. Retrieved Jan 15, 2025 from

https://statproofbook.github.io/P/norm-lincomb

[36] Srinivas Sridharan, Taekyung Heo, Louis Feng, Zhaodong Wang, Matt Bergeron,

Wenyin Fu, Shengbao Zheng, Brian Coutinho, Saeed Rashidi, Changhai Man,

et al. 2023. Chakra: Advancing performance benchmarking and co-design using

standardized execution traces. arXiv preprint arXiv:2305.14516 (2023).
[37] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong, Shane

Treadway, Yuhui Bao, SpencerHance, CarterMcCardwell, Vincent Zhao, Harrison

Barclay, Amir Kavyan Ziabari, Zhongliang Chen, Rafael Ubal, José L. Abellán,

John Kim, Ajay Joshi, and David Kaeli. 2019. MGPUSim: enabling multi-GPU

performance modeling and optimization. In Proceedings of the 46th International
Symposium on Computer Architecture (, Phoenix, Arizona,) (ISCA ’19). Association
for Computing Machinery, New York, NY, USA, 197–209. https://doi.org/10.

1145/3307650.3322230

[38] Elliot Tanis and Robert V. Hogg. 1977. Probability and Statistical Inference.
[39] Luk Van Ertvelde, Filip Hellebaut, Lieven Eeckhout, and Koen De Bosschere. 2006.

NSL-BLRL: Efficient cache warmup for sampled processor simulation. In 39th
Annual Simulation Symposium (ANSS’06). IEEE, 8–pp.

[40] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. 2019.

Nvbit: A dynamic binary instrumentation framework for nvidia gpus. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
372–383.

[41] Thomas FWenisch, Roland EWunderlich, Michael Ferdman, Anastassia Ailamaki,

Babak Falsafi, and James C Hoe. 2006. SimFlex: statistical sampling of computer

system simulation. IEEE Micro 26, 4 (2006), 18–31.
[42] William Won, Taekyung Heo, Saeed Rashidi, Srinivas Sridharan, Sudarshan

Srinivasan, and Tushar Krishna. 2023. ASTRA-sim2.0: Modeling Hierarchical

Networks and Disaggregated Systems for Large-model Training at Scale. In 2023
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). 283–294. https://doi.org/10.1109/ISPASS57527.2023.00035

[43] Roland E Wunderlich, Thomas F Wenisch, Babak Falsafi, and James C Hoe.

2003. SMARTS: Accelerating microarchitecture simulation via rigorous statistical

sampling. In Proceedings of the 30th annual international symposium on Computer
architecture. 84–97.

[44] Zhibin Yu, Lieven Eeckhout, Nilanjan Goswami, Tao Li, Lizy K John, Hai Jin,

Chengzhong Xu, and JunminWu. 2015. GPGPU-MiniBench: accelerating GPGPU

micro-architecture simulation. IEEE Trans. Comput. 64, 11 (2015), 3153–3166.

14

https://rocm.docs.amd.com/projects/rocprofiler/en/latest/
https://rocm.docs.amd.com/projects/rocprofiler/en/latest/
https://doi.org/10.1145/3466752.3480100
https://doi.org/10.1109/ISPASS.2014.6844456
https://doi.org/10.1145/3620665.3640367
https://doi.org/10.1145/3620665.3640367
https://api.semanticscholar.org/CorpusID:11937761
https://doi.org/10.1109/IPDPS.2014.53
https://huggingface.co
https://huggingface.co
https://docs.habana.ai/en/latest/Profiling/Intel_Gaudi_Profiling/
https://docs.habana.ai/en/latest/Profiling/Intel_Gaudi_Profiling/
https://docs.jax.dev/en/latest/profiling.html
https://docs.jax.dev/en/latest/profiling.html
https://doi.org/10.1109/ISCA45697.2020.00047
https://onlinestatbook.com/2/sampling_distributions/samp_dist_mean.html
https://onlinestatbook.com/2/sampling_distributions/samp_dist_mean.html
https://doi.org/10.1145/3613424.3623773
https://doi.org/10.1109/ISPASS57527.2023.00030
https://arxiv.org/abs/2307.06435
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html##warp-shuffle-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html##warp-shuffle-functions
https://docs.nvidia.com/deeplearning/cudnn/latest/api/overview.html
https://docs.nvidia.com/deeplearning/cudnn/latest/api/overview.html
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://arxiv.org/abs/1912.01703
https://statproofbook.github.io/P/norm-lincomb
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1109/ISPASS57527.2023.00035

	Abstract
	1 Introduction
	2 Observation and Motivation
	2.1 Heterogeneous runtime behavior of repeated GPU kernels
	2.2 Extracting kernel's runtime diversity with exe. time distributions
	2.3 Using execution time as a kernel signature for robust and accurate sampling

	3 STEM and ROOT methodology
	3.1 Kernel-level sampling for GPU workloads
	3.2 STEM: Statistical Error Modeling for GPU simulation
	3.3 Optimizing STEM for multiple clusters
	3.4 ROOT: Fine-grained hierarchical GPU kernel clustering
	3.5 Running the sampled simulation

	4 Evaluation
	4.1 Experiment Setup
	4.2 Speedup and Error validation
	4.3 Limitations of current sampling methods
	4.4 Tradeoff between the sample size and error
	4.5 Validating STEM on various GPU microarchitectures
	4.6 Validation on microarchitectural metrics
	4.7 Scalability of STEM on large workloads

	5 Discussion
	5.1 Potential limitations of using execution time in kernel sampling
	5.2 Limitations and Future works

	6 Related works
	6.1 Workload sampling for CPUs
	6.2 Kernel-level workload sampling for GPUs
	6.3 Other sampling methods in GPU workloads

	7 Conclusion
	8 Appendix
	8.1 Solution for Problem 1.
	8.2 Proof of Theorem 3.1

	References

